A large-scale optical microscopy image dataset of potato tuber for deep learning based plant cell assessment

被引:19
作者
Biswas, Sumona [1 ]
Barma, Shovan [1 ]
机构
[1] Indian Inst Informat Technol Guwahati, Dept Elect & Commun Engn, Gauhati, Assam, India
关键词
STARCH; VISUALIZATION; SEGMENTATION; DIVISION;
D O I
10.1038/s41597-020-00706-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a new large-scale three-fold annotated microscopy image dataset, aiming to advance the plant cell biology research by exploring different cell microstructures including cell size and shape, cell wall thickness, intercellular space, etc. in deep learning (DL) framework. This dataset includes 9,811 unstained and 6,127 stained (safranin-o, toluidine blue-o, and lugol's-iodine) images with three-fold annotation including physical, morphological, and tissue grading based on weight, different section area, and tissue zone respectively. In addition, we prepared ground truth segmentation labels for three different tuber weights. We have validated the pertinence of annotations by performing multi-label cell classification, employing convolutional neural network (CNN), VGG16, for unstained and stained images. The accuracy has been achieved up to 0.94, while, F2-score reaches to 0.92. Furthermore, the ground truth labels have been verified by semantic segmentation algorithm using UNet architecture which presents the mean intersection of union up to 0.70. Hence, the overall results show that the data are very much efficient and could enrich the domain of microscopy plant cell analysis for DL-framework.
引用
收藏
页数:11
相关论文
共 51 条
[11]   Visualization of food structure by Confocal Laser Scanning Microscopy (CLSM) [J].
Dürrenberger, MB ;
Handschin, S ;
Conde-Petit, B ;
Escher, F .
LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE-FOOD SCIENCE AND TECHNOLOGY, 2001, 34 (01) :11-17
[12]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[13]   StomataCounter: a neural network for automatic stomata identification and counting [J].
Fetter, Karl C. ;
Eberhardt, Sven ;
Barclay, Rich S. ;
Wing, Scott ;
Keller, Stephen R. .
NEW PHYTOLOGIST, 2019, 223 (03) :1671-1681
[14]  
Fornal J., 2002, ELECT J POL AGR U, V5
[15]   Live Demonstration: Low-Power Low-Cost Cyber-Physical System for Bird Monitoring [J].
Garcia-Rodriguez, A. ;
Rodriguez-Sakamoto, R. ;
Fernandez-Berni, J. ;
del Rio, R. ;
Marin, J. ;
Baena, M. ;
Bustamante, J. ;
Carmona-Galan, R. ;
Rodriguez-Vazquez, A. .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[16]  
Haman J., 2000, International Agrophysics, V14, P37
[17]   CNN-based two-stage cell segmentation improves plant cell tracking [J].
Jiang, Wenbo ;
Wu, Lehui ;
Liu, Shihui ;
Liu, Min .
PATTERN RECOGNITION LETTERS, 2019, 128 :311-317
[18]  
Kaushik SK., 2016, J FOOD SCI TECH MYS, V53, P2040, DOI [10.1007/s13197-016-2173-4, DOI 10.1007/s13197-016-2173-4]
[19]  
Kingma DP, 2014, ADV NEUR IN, V27
[20]  
Konstankiewicz K., 2002, International Agrophysics, V16, P119