Cost of cellulases is a major impediment in commercialization of cellulosic ethanol. To reduce the enzyme doses for the production of fermentable sugars from rice straw (RS), a series of alkali conditioning experiments were conducted prior to dilute acid (DA) pretreatment. This approach resulted in removal of a majority of extractives, ash, acetic acid, and part lignin, and thus resulted in lowering pseudolignin formation thereby increasing enzymatic hydrolysis yields. Glucan hydrolysis of 69.8%, 74.0%, and 83.5% was obtained at 10 wt % water insoluble solid (WIS) using 8 FPU enzyme/g WIS of biomass conditioned using 0.2, 0.4, and 0.5 wt % alkali prior to pretreatment, which is 14-37% higher than the control (61.0%). The overall sugar recovery in these experiments were 69.2%, 70.2%, and 68.5% at 15 wt % WIS resulting in a sugar concentration greater than 120 g/L, which in turn can produce approximately 5-6% w/v ethanol concentration in fermentation broth. It was found that this approach resulted in a decrease of the enzyme consumption vis-a-vis the conventional process by 46.4% to recover the same amount of sugars. This lowering of enzyme consumption has resulted in net savings, after taking into account the cost of alkali used in the conditioning steps.