The role of the S1 binding site of carboxypeptidase M in substrate specificity and turn-over

被引:22
作者
Deiteren, Kathleen
Surpateanu, Georgiana
Gilany, Kambiz
Willemse, Johan L.
Hendriks, Dirk F.
Augustyns, Koen
Laroche, Yves
Scharpe, Simon
Lambeir, Anne-Marie
机构
[1] Univ Antwerp, Med Biochem Lab, Dept Pharmaceut Sci, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Med Chem Lab, Dept Pharmaceut Sci, B-2610 Antwerp, Belgium
[3] Univ Antwerp, Prot Chem Lab, Dept Biomed Sci, B-2610 Antwerp, Belgium
[4] Univ Louvain, Dept Mol & Cellular Med, D Collen Res Fdn VZW, B-3000 Louvain, Belgium
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2007年 / 1774卷 / 02期
关键词
carboxypeptidase; structure function relationship; membrane protein; substrate specificity; molecular modelling; peptide;
D O I
10.1016/j.bbapap.2006.11.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The influence of the P1 amino acid on the substrate selectivity, the catalytic parameters K-m and k(cat), of carboxypeptidase M (CPM) (E.C. 3.4.17.12) was systematically studied using a series of benzoyl-Xaa-Arg substrates. CPM had the highest catalytic efficiency (ka,X) for substrates with Met, Ala and aromatic amino acids in the penultimate position and the lowest with amino acids with branched side-chains. Substrates with Pro in P1 were not cleaved in similar conditions. The P1 substrate preference of CPM differed from that of two other members of the carboxypeptidase family, CPN (CPN/CPE subfamily) and CPB (CPA/CPB subfamily). Aromatic P1 residues discriminated most between CPM and CPN. The type of P2 residue also influenced the k(cat) and K-m of CPM. Extending the substrate up to P7 had little effect on the catalytic parameters. The substrates were modelled in the active site of CPM. The results indicate that PI-S I interactions play a role in substrate binding and tum-over. (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 43 条
[1]   ON SIZE OF ACTIVE SITE IN PROTEASES .2. CARBOXYPEPTIDASE-A [J].
ABRAMOWITZ, N ;
SCHECHTER, I ;
BERGER, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1967, 29 (06) :862-+
[2]   Crystal structures of potent thiol-based inhibitors bound to carboxypeptidase B [J].
Adler, M ;
Bryant, J ;
Buckman, B ;
Islam, I ;
Larsen, B ;
Finster, S ;
Kent, L ;
May, K ;
Mohan, R ;
Yuan, SD ;
Whitlow, M .
BIOCHEMISTRY, 2005, 44 (26) :9339-9347
[3]   The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases [J].
Aloy, P ;
Companys, V ;
Vendrell, J ;
Aviles, FX ;
Fricker, LD ;
Coll, M ;
Gomis-Rüth, FX .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16177-16184
[4]  
BARRETT AJ, 2004, HDB PROTEOLYTIC ENZY
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Plasma and recombinant thrombin-activable fibrinolysis inhibitor (TAFI) and activated TAFI compared with respect to glycosylation, thrombin/thrombomodulin-dependent activation, thermal stability, and enzymatic properties [J].
Boffa, MB ;
Wang, W ;
Bajzar, L ;
Nesheim, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2127-2135
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Native carboxypeptidase a in a new crystal environment reveals a different conformation of the important tyrosine 248 [J].
Bukrinsky, ET ;
Bjerrum, MJ ;
Kadziola, A .
BIOCHEMISTRY, 1998, 37 (47) :16555-16564
[9]   Missense polymorphism in the human carboxypeptlidase E gene alters enzymatic activity [J].
Chen, H ;
Jawahar, S ;
Qian, YM ;
Duong, QY ;
Chan, GY ;
Parker, A ;
Meyer, JM ;
Moore, KJ ;
Chayen, S ;
Gross, DJ ;
Glaser, B ;
Permutt, MA ;
Fricker, LD .
HUMAN MUTATION, 2001, 18 (02) :120-131
[10]  
DEDDISH PA, 1990, J BIOL CHEM, V265, P15083