Universal burst error correction

被引:22
作者
Fossorier, Marc [1 ]
机构
[1] Univ Hawaii, Dept Elect Engn, Honolulu, HI 96822 USA
来源
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS | 2006年
关键词
D O I
10.1109/ISIT.2006.261893
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, it is shown that under very mild assumptions, practically any binary linear block code of length N and dimension K is able to correct any burst of length up to N - K with probability of success P-c = 1 for erasures, and any burst of length up to N - K - m with probability of success P-c >= 1 - N2(-m) for errors. In both cases, the decoding is based on identifying a string of zeroes in an extended syndrome corresponding to a particular representation of the parity check matrix of the code and its complexity is O(N-2) binary operations.
引用
收藏
页码:1969 / 1973
页数:5
相关论文
共 5 条
[1]  
BARG A, 1998, HDB CODING THEORY 1
[2]   A BURST-ERROR-CORRECTING ALGORITHM FOR REED-SOLOMON CODES [J].
CHEN, J ;
OWSLEY, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) :1807-1812
[3]  
Lin S., 2004, ERROR CONTROL CODING
[4]  
Peng F, 2004, GLOB TELECOMM CONF, P503
[5]  
TAI YY, 2006, LNCS, V3857