Neural networks fusion to overlay control system for lithography process

被引:0
|
作者
Kim, Jihyun [1 ]
Seo, Sanghyeok [1 ]
Kim, Sung-Shick [2 ]
机构
[1] Korea Univ, Res Inst Informat & Commun Technol, Sungbuk Ku, 1 5-Ka, Seoul 136701, South Korea
[2] Korea Univ, Dept Ind Syst & Informat, Sungbuk Ku, Seoul 136701, South Korea
关键词
neural networks; lithography; run-to-run control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a neural network based overlay control system for lithography process. The control system is structured to be compatible with the existing control system. The two main components of the control system are neural network prediction module for metrology prediction and a control module for various control methods. The prediction module utilizes various overlay metrologies and other process related parameters to assess the process conditions and make accurate predictions of the output metrologies. Based on the prediction results, control module calculates the appropriate control parameter settings. The prediction module is constructed using the Levenberg-Marquardt method to compensate for the small to medium size neural network and the demand for speed. The control module incorporates both popular control methods and specific engineering process control (EPC). Evaluation results are presented to illustrate the control system performance.
引用
收藏
页码:587 / +
页数:3
相关论文
共 50 条
  • [1] Implementation and benefits of advanced process control for lithography CD and overlay
    Zavyalova, L
    Fu, CC
    Seligman, G
    Tapp, P
    Pol, V
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XVII, PTS 1 AND 2, 2003, 5038 : 362 - 372
  • [2] Overlay control for nanoimprint lithography
    Fukuhara, Kazuya
    Suzuki, Masato
    Mitsuyasu, Masaki
    Kono, Takuya
    Nakasugi, Tetsuro
    Lim, Yonghyun
    Jung, Wooyung
    EMERGING PATTERNING TECHNOLOGIES, 2017, 10144
  • [3] Zernike model for overlay control and tool monitor for lithography and etch process
    Zhang, Libin
    Feng, Yaobin
    Song, Zhen
    Yang, Shang
    Wei, Yayi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (06):
  • [4] Overlay control requirements for immersion lithography
    Eichelberger, B.
    Adel, M.
    Izikson, P.
    Tien, D.
    Huang, C. K.
    Robinson, J. C.
    Herrera, Pedro
    2008 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE, 2008, : 359 - +
  • [5] Nanometer control of the markerless overlay process using thermal Scanning Probe Lithography
    Rawlings, Colin
    Duerig, Urs
    Hedrick, James
    Coady, Dan
    Knoll, Armin
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1670 - 1675
  • [6] Neural networks in process control
    de Cañete, JF
    Zufiria, PJ
    Bulsari, AB
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1999, 13 (04) : 201 - 202
  • [7] Fuzzy and robust neural networks and information system process control
    Suh, Michael
    Booth, David E.
    Grznar, John
    Prasad, Sameer
    Lloyd, Scott
    Hamburg, James
    Industrial Mathematics, 2000, 50 (01): : 5 - 31
  • [8] Stochastic Control of Multilayer Overlay in Lithography Processes
    Jiao, Yibo
    Djurdjanovic, Dragan
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2011, 24 (03) : 404 - 417
  • [9] LITHOGRAPHY PROCESS-CONTROL SYSTEM (PERFECT)
    MORISAKI, K
    KAWAMURA, E
    MICROELECTRONIC ENGINEERING, 1992, 17 (1-4) : 435 - 438
  • [10] A system to optimize mix and match overlay in lithography
    Wakamoto, Shinji
    Ishii, Yuuki
    Yasukawa, Koji
    Maejima, Shinroku
    Kato, Atsuhiko
    Robinson, John C.
    Choi, Dong-Sub
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXII, PTS 1 AND 2, 2008, 6922 (1-2):