INCOMPRESSIBLE LIMIT OF THE NONISENTROPIC IDEAL MAGNETOHYDRODYNAMIC EQUATIONS

被引:33
作者
Jiang, Song [1 ]
Ju, Qiangchang [2 ]
Li, Fucai [3 ]
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, POB 8009, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
compressible ideal MHD equations; nonisentropic; incompressible limit; MACH NUMBER LIMIT; COMPRESSIBLE EULER EQUATION; SINGULAR LIMITS; INITIAL LAYER; SYSTEMS; DOMAIN; FLOWS;
D O I
10.1137/15M102842X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the incompressible limit of the compressible nonisentropic ideal magnetohydrodynamic equations with general initial data in the whole space Rd (d = 2, 3). We first establish the existence of classic solutions on a time interval independent of the Mach number. Then, by deriving uniform a priori estimates, we obtain the convergence of the solution to that of the incompressible magnetohydrodynamic equations as the Mach number tends to zero.
引用
收藏
页码:302 / 319
页数:18
相关论文
共 35 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]  
Alazard T, 2005, ADV DIFFERENTIAL EQU, V10, P19
[3]  
[Anonymous], 1984, Applied Mathematical Sciences
[4]  
Asano K., 1987, Japan J Appl Math, V4, P455, DOI [10.1007/BF03167815, DOI 10.1007/BF03167815]
[5]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[6]  
Bresch D, 2010, ADV MATH FLUID MECH, P91
[7]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475
[8]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[9]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279
[10]  
Feireisl E, 2009, ADV MATH FLUID MECH, P1