A Tutorial on Chemical Reaction Network Dynamics

被引:89
作者
Angeli, David [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Florence, Dipartimento Sistemi & Informat, Florence, Italy
关键词
Chemical Reaction Networks; Persistence; Multi-stability; Entropy; Monotone dynamics; MULTIPLE EQUILIBRIA; STABILITY;
D O I
10.3166/EJC.15.398-406
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chemical Reaction Networks (CRNs for short) can be effectively modeled by means of nonlinear, parameter-dependent systems of ordinary differential equations. The uncertain knowledge of parameters makes for the need of qualitative tools which relate structure and dynamics of such nonlinear systems. We present an account of different results which allow to claim properties such as global asymptotic stability, persistence, monotonicity and existence of a unique equilibrium on the basis of graphical representations of the network.
引用
收藏
页码:398 / 406
页数:9
相关论文
共 27 条
[1]  
ANGELI D, 2007, LECT NOTES CONTROL I
[2]   Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles [J].
Angeli, David ;
Sontag, Eduardo D. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (01) :128-140
[3]   Understanding complex signaling networks through models and metaphors [J].
Bhalla, US .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2003, 81 (01) :45-65
[4]   Input-to-state stability of rate-controlled biochemical networks [J].
Chaves, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (02) :704-727
[5]  
Clark Burton R., 1980, Academic culture, P1, DOI [10.1002/9780470142622.ch1, DOI 10.1002/9780470142622.CH1]
[6]   Multiple equilibria in complex chemical reaction networks: I. The injectivity property [J].
Craciun, G ;
Feinberg, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1526-1546
[7]   Identifiability of chemical reaction networks [J].
Craciun, Gheorghe ;
Pantea, Casian .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (01) :244-259
[8]   Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph [J].
Craciun, Gheorghe ;
Feinberg, Martin .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1321-1338
[9]   Modular cell biology: retroactivity and insulation [J].
Del Vecchio, Domitilla ;
Ninfa, Alexander J. ;
Sontag, Eduardo D. .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[10]  
Erdi P., 1989, Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models