Analysis of BDF2 finite difference method for fourth-order integro-differential equation

被引:1
作者
Liu, Yanling [1 ]
Yang, Xuehua [1 ]
Zhang, Haixiang [1 ]
Liu, Yuan [1 ]
机构
[1] Hunan Univ Technol, Coll Sci, Zhuzhou 412008, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equation; BDF2; scheme; Finite difference method; Stability and convergence; 65M60; 26A33; DISCONTINUOUS GALERKIN METHOD; FRACTIONAL DIFFUSION EQUATION; ELEMENT-METHOD; SCHEME;
D O I
10.1007/s40314-021-01449-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the stability and error analysis are presented for fully discrete solutions of the fourth-order differential equation with the multi-term Riemann-Liouville fractional integral. Our numerical scheme is obtained by the standard central difference method in space and the formally two-step backward differentiation formula method and second-order convolution quadrature in time. Optimal order of the numerical scheme in L2-norm is established using the discrete energy method. The analysis is supported by two numerical experiments.
引用
收藏
页数:20
相关论文
共 44 条
[21]   A DIFFERENCE SCHEME FOR A NONLINEAR PARTIAL INTEGRODIFFERENTIAL EQUATION [J].
LOPEZMARCOS, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (01) :20-31
[22]   DISCRETIZED FRACTIONAL CALCULUS [J].
LUBICH, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :704-719
[23]   Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term [J].
Lubich, C ;
Sloan, IH ;
Thomee, V .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :1-17
[24]   CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .1. [J].
LUBICH, C .
NUMERISCHE MATHEMATIK, 1988, 52 (02) :129-145
[25]   Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation [J].
Luchko, Yury .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) :538-548
[26]  
MACCAMY RC, 1977, Q APPL MATH, V35, P1
[27]   Regularity theory for time-fractional advection-diffusion-reaction equations [J].
McLean, William ;
Mustapha, Kassem ;
Ali, Raed ;
Knio, Omar M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) :947-961
[28]   WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS [J].
McLean, William ;
Mustapha, Kassem ;
Ali, Raed ;
Knio, Omar .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) :918-944
[29]   AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE [J].
Mustapha, K. ;
Brunner, H. ;
Mustapha, H. ;
Schoetzau, D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1369-1396
[30]  
Pipkin AC, 1986, Lectures on viscoelasticity theory, V2nd, DOI DOI 10.1007/978-1-4615-9970-8