Review of Surface Modification Technologies for Mid-Infrared Antireflection Microstructures Fabrication

被引:64
作者
Bushunov, Andrey A. [1 ,2 ]
Tarabrin, Mikhail K. [1 ,2 ,3 ]
Lazarev, Vladimir A. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow 105005, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
antireflection; colloids; etching; laser ablation; lithography; microstructures; mid– infrared; nanostructures;
D O I
10.1002/lpor.202000202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mid-infrared materials antireflection is in high demand for high-powered or ultra-broadband coherent light sources, where conventional antireflection coatings cannot be reliably applied. This work provides a critical review of the recent advances in microstructure fabrication technology for mid-infrared antireflection applications. Several techniques are reviewed, including direct imprinting, wet and reactive ion etching using conventional photoresist masking, novel colloid crystal masks, and maskless etching, laser-induced periodic structure formation, and multiple laser ablation method modifications, including femtosecond laser direct writing, direct laser interference ablation, and single pulse ablation. The advantages and drawbacks of the different approaches are discussed in detail to highlight the most promising techniques for the fabrication of antireflection microstructures capable of achieving 99% transmittance in the 2-16 mu m range.
引用
收藏
页数:21
相关论文
共 137 条
[1]   Comprehensive study of antireflection coatings for mid-infrared lasers [J].
Amirloo, Jeyran ;
Saini, Simarjeet S. ;
Dagenais, Mario .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (06)
[2]   Cryo atomic layer etching of SiO2 by C4F8 physisorption followed by Ar plasma [J].
Antoun, G. ;
Lefaucheux, P. ;
Tillocher, T. ;
Dussart, R. ;
Yamazaki, K. ;
Yatsuda, K. ;
Faguet, J. ;
Maekawa, K. .
APPLIED PHYSICS LETTERS, 2019, 115 (15)
[3]  
Artyushenko Viacheslav., 2014, OPTIK PHOTONIK, V9, P35, DOI [10.1002/opph.201400062, DOI 10.1002/OPPH.201400062]
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Tunable reflection minima of nanostructured antireflective surfaces [J].
Boden, S. A. ;
Bagnall, D. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[6]   Laser-Induced Periodic Surface Structures-A Scientific Evergreen [J].
Bonse, Joern ;
Hoehm, Sandra ;
Kirner, Sabrina V. ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (03) :109-123
[7]   On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses [J].
Bonse, Joern ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
[8]  
Bushunov A. A., 2019, Journal of Physics: Conference Series, V1348, DOI 10.1088/1742-6596/1348/1/012039
[9]   Review of Surface Modification Technologies for Mid-Infrared Antireflection Microstructures Fabrication [J].
Bushunov, Andrey A. ;
Tarabrin, Mikhail K. ;
Lazarev, Vladimir A. .
LASER & PHOTONICS REVIEWS, 2021, 15 (05)
[10]   Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation [J].
Calafiore, Giuseppe ;
Koshelev, Alexander ;
Allen, Frances I. ;
Dhuey, Scott ;
Sassolini, Simone ;
Wong, Edward ;
Lum, Paul ;
Munechika, Keiko ;
Cabrini, Stefano .
NANOTECHNOLOGY, 2016, 27 (37)