Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents

被引:2
作者
Wu, Huiling [1 ]
机构
[1] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350108, Fujian, Peoples R China
关键词
Choquard system; Lower critical exponent; Positive ground state; HARDY-LITTLEWOOD-SOBOLEV; EXISTENCE;
D O I
10.1186/s13661-021-01491-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the coupled Choquard type system with lower critical exponents {-Delta u+lambda(1)(x)u=mu(1)((I)alpha*|u|N+alpha/N)|u|alpha/N-1u+beta(I-alpha*|v|N+alpha/N)|u|alpha/N-1u, x is an element of R-N, -Delta v+lambda(2)(x)v=mu(2)(I-alpha*|v|N+alpha/N)|v|alpha/N-1v+beta(I-alpha*|u|N+alpha/N)|v|alpha/N-1v,x is an element of R-N, u,v is an element of H-1(R-N), where N >= 3, mu(1),mu(2),beta>0, and lambda(1)(x), lambda 2(()x) are nonnegative functions. The existence of at least one positive ground state of this system is proved under certain assumptions on lambda(1), lambda(2).
引用
收藏
页数:19
相关论文
共 26 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]   ELECTRONS IN LATTICE FIELDS [J].
FROHLICH, H .
ADVANCES IN PHYSICS, 1954, 3 (11) :325-&
[3]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[4]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041
[5]   On Nodal Solutions of the Nonlinear Choquard Equation [J].
Gui, Changfeng ;
Guo, Hui .
ADVANCED NONLINEAR STUDIES, 2019, 19 (04) :677-691
[6]   On the singular elliptic systems involving multiple critical Sobolev exponents [J].
Huang, Yan ;
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) :400-412
[7]   GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS [J].
Li, Xinfu ;
Ma, Shiwang .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (01) :153-170
[8]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194
[9]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[10]  
LIEB EH, 1977, STUD APPL MATH, V57, P93