Attraction and stochastic asymptotic stability and boundedness of stochastic functional differential equations with respect to semimartingales

被引:5
作者
Yuan, Chenggui [1 ]
Mao, Xuerong
机构
[1] Univ Wales Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow, Lanark, Scotland
关键词
boundedness; Ito's formula; Lyapunov function; stochastic asymptotic stability; supermartingale convergence theorem;
D O I
10.1080/07362990600958937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish new results on the attraction for solutions to stochastic functional differential equations with respect to semimartingale. Most of the existing results stochastic stability use a single Lyapunov function, but we shall instead use multiple Lyapunov functions in the study of attraction. Moreover, from our results on the attraction follow several new criteria on almost surely asymptotic stability and boundedness of the solutions.
引用
收藏
页码:1169 / 1184
页数:16
相关论文
共 19 条
[1]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[2]  
Arnold L., 1972, Stochastic Differential Equations: Theory and Applications
[3]  
Elworthy K.D., 1982, STOCHASTIC DIFFERENT, V70
[4]  
Freidlin M.I., 2012, RANDOM PERTURBATIONS, V260
[5]   ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES FOR SOLUTIONS OF STOCHASTIC EQUATIONS [J].
FRIEDMAN, A ;
PINSKY, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) :331-358
[6]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[7]  
Khasminskii R., 1981, STOCHASTIC STABILITY
[8]  
KOLMANOSKII VB, 1992, APPL THEORY FUNCTION
[9]  
Kushner H J., 1967, Stochastic Stability and Control
[10]  
Ladde G. S., 1980, Random Differential Inequalities