A Malaria Transmission Model with Temperature-Dependent Incubation Period

被引:50
作者
Wang, Xiunan [1 ]
Zhao, Xiao-Qiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Vector-borne disease; Periodic delay; Basic reproduction ratio; Periodic solution; Global attractivity; POPULATION-MODELS; THRESHOLD; DYNAMICS; DISEASES; NUMBERS;
D O I
10.1007/s11538-017-0276-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Malaria is an infectious disease caused by Plasmodium parasites and is transmitted among humans by female Anopheles mosquitoes. Climate factors have significant impact on both mosquito life cycle and parasite development. To consider the temperature sensitivity of the extrinsic incubation period (EIP) of malaria parasites, we formulate a delay differential equations model with a periodic time delay. We derive the basic reproduction ratio and establish a threshold type result on the global dynamics in terms of , that is, the unique disease-free periodic solution is globally asymptotically stable if ; and the model system admits a unique positive periodic solution which is globally asymptotically stable if . Numerically, we parameterize the model with data from Maputo Province, Mozambique, and simulate the long-term behavior of solutions. The simulation result is consistent with the obtained analytic result. In addition, we find that using the time-averaged EIP may underestimate the basic reproduction ratio.
引用
收藏
页码:1155 / 1182
页数:28
相关论文
共 37 条
[1]   MOSQUITO-STAGE-STRUCTURED MALARIA MODELS AND THEIR GLOBAL DYNAMICS [J].
Ai, Shangbing ;
Li, Jia ;
Lu, Junliang .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (04) :1213-1237
[2]  
[Anonymous], 1982, Modelling fluctuating populations
[3]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[4]   On the biological interpretation of a definition for the parameter R0 in periodic population models [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) :601-621
[5]   The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission [J].
Beck-Johnson, Lindsay M. ;
Nelson, William A. ;
Paaijmans, Krijn P. ;
Read, Andrew F. ;
Thomas, Matthew B. ;
Bjornstad, Ottar N. .
PLOS ONE, 2013, 8 (11)
[6]   Malaria parasite development in mosquitoes [J].
Beier, JC .
ANNUAL REVIEW OF ENTOMOLOGY, 1998, 43 :519-543
[7]   Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [J].
Chitnis, Nakul ;
Hyman, James M. ;
Cushing, Jim M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) :1272-1296
[8]   A climate-based distribution model of malaria transmission in sub-Saharan Africa [J].
Craig, MH ;
Snow, RW ;
le Sueur, D .
PARASITOLOGY TODAY, 1999, 15 (03) :105-111
[9]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[10]  
Hale JK., 1993, Introduction To Functional Differential Equations, V99