A multi-dimensional Markov chain and the Meixner ensemble

被引:17
作者
Johansson, Kurt [1 ]
机构
[1] Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
来源
ARKIV FOR MATEMATIK | 2010年 / 48卷 / 01期
关键词
SIMPLE EXCLUSION PROCESS; RANDOM-MATRIX ENSEMBLES; GROWTH;
D O I
10.1007/s11512-008-0089-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the transition probability of the Markov chain (G(i,1),...,G(i,n)) (ia parts per thousand yen1), where the G(i,j)'s are certain directed last-passage times, is given by a determinant of a special form. An analogous formula has recently been obtained by Warren in a Brownian motion model. Furthermore we demonstrate that this formula leads to the Meixner ensemble when we compute the distribution function for G(m,n). We also obtain the Fredholm determinant representation of this distribution, where the kernel has a double contour integral representation.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 1998, Tech. Rep. 98-17
[2]   GUEs and queues [J].
Baryshnikov, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) :256-274
[3]   Asymptotics of Plancherel measures for symmetric groups [J].
Borodin, A ;
Okounkov, A ;
Olshanski, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (03) :481-515
[4]  
BORODIN A, 2006, AM MATH SOC TRANSL 2, V217, P9
[5]  
Brankov JG, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066136
[6]  
DIEKER AB, 2007, ARXIV07071843
[7]  
Gravner J, 2002, ANN PROBAB, V30, P1340
[8]   Discrete polynuclear growth and determinantal processes [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) :277-329
[9]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[10]   Discrete orthogonal polynomial ensembles and the Plancherel measure [J].
Johansson, K .
ANNALS OF MATHEMATICS, 2001, 153 (01) :259-296