Micro-photoluminescence spectroscopy on metal precipitates in silicon

被引:45
作者
Gundel, Paul [1 ]
Schubert, Martin C. [1 ]
Kwapil, Wolfram [1 ]
Schoen, Jonas [2 ]
Reiche, Manfred [3 ]
Savin, Hele [4 ]
Yli-Koski, Marko [4 ]
Sans, Juan Angel [5 ]
Martinez-Criado, Gema [5 ]
Seifert, Winfried [6 ]
Warta, Wilhelm [1 ]
Weber, Eicke R. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany
[2] Univ Freiburg, Freiburg Mat Res Ctr, D-79104 Freiburg, Germany
[3] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[4] Aalto Univ, Helsinki 02015, Finland
[5] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[6] Brandenburg Tech Univ Cottbus, IHP BTU Joint Lab, D-03046 Cottbus, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2009年 / 3卷 / 7-8期
关键词
IRON;
D O I
10.1002/pssr.200903221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic impurities are detrimental to many silicon devices and limit the efficiency of multi crystalline silicon solar cells. Therefore they are a major subject of ongoing research. Photoluminescence spectroscopy is a promising technique for detecting precipitated metals in silicon because of its sensitivity to the minority carrier density and to specific types of defects; however the impact of impurities on the defect luminescence could not be clarified yet. In this letter we examine the role of micron-sized iron and copper precipitates in direct bonded wafers by micro-photoluminescence spectroscopy. Both kinds of precipitates are detectable by means of the reduced band-to-band luminescence. An element-specific effect on the defect luminescence is observed. The results are confirmed by X-ray fluorescence spectroscopy. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:230 / 232
页数:3
相关论文
共 13 条
[1]   PRECIPITATION OF IRON IN POLYCRYSTALLINE SILICON [J].
BAILEY, J ;
WEBER, ER .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1993, 137 (02) :515-523
[2]   Transition metal co-precipitation mechanisms in silicon [J].
Buonassisi, T. ;
Heuer, M. ;
Istratov, A. A. ;
Pickett, M. D. ;
Marcus, M. A. ;
Lai, B. ;
Cai, Z. ;
Heald, S. M. ;
Weber, E. R. .
ACTA MATERIALIA, 2007, 55 (18) :6119-6126
[3]  
HOFFMANN V, 2008, P 23 EU PVSEC UNPUB
[4]   Microscopic and spectroscopic mapping of dislocation-related photoluminescence in multicrystalline silicon wafers [J].
Inoue, M. ;
Sugimoto, H. ;
Tajima, M. ;
Ohshita, Y. ;
Ogura, A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (Suppl 1) :S132-S134
[5]   Realistic evaluation of power losses in solar cells by using thermographic methods [J].
Isenberg, J ;
Warta, W .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (09) :5200-5209
[6]  
KITTLER M, 2006, MAT SCI ENG C, V26, P5
[7]   LUMINESCENCE ASSOCIATED WITH THE PRESENCE OF DISLOCATIONS IN SILICON [J].
LIGHTOWLERS, EC ;
HIGGS, V .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1993, 138 (02) :665-672
[8]   Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence [J].
Macdonald, D. ;
Tan, J. ;
Trupke, T. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
[9]   TRANSMISSION ELECTRON-MICROSCOPY OBSERVATION OF DEFECTS INDUCED BY FE CONTAMINATION ON SI(100) SURFACE [J].
SADAMITSU, S ;
SASAKI, A ;
HOURAI, M ;
SUMITA, S ;
FUJINO, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (08) :1591-1596
[10]   THE NATURE OF PHOTO-LUMINESCENCE FROM PLASTICALLY DEFORMED SILICON [J].
SUEZAWA, M ;
SUMINO, K .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1983, 78 (02) :639-645