Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries

被引:93
作者
Li, Linpo [1 ,2 ,3 ]
Liu, Shuailei [2 ,3 ]
Liu, Wencong [2 ,3 ]
Ba, Deliang [1 ,2 ,3 ]
Liu, Wenyi [2 ,3 ]
Gui, Qiuyue [2 ,3 ]
Chen, Yao [2 ,3 ]
Hu, Zuoqi [1 ]
Li, Yuanyuan [1 ]
Liu, Jinping [2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[4] Harbin Normal Univ, Sch Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrolyte concentration regulation; Quasi-solid-state Zn ion battery; K0.486V2O5; Large interlayer spacing; Cycling stability; HIGH-PERFORMANCE; ENERGY-STORAGE; SUPERCAPACITORS; VANADATES; OXIDE;
D O I
10.1007/s40820-020-00554-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries (AZIBs) due to their large capacities, good rate performance and facile synthesis in large scale. However, their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes. Herein, taking a new potassium vanadate K0.486V2O5 (KVO) cathode with large interlayer spacing (similar to 0.95 nm) and high capacity as an example, we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte, but with no need to approach "water-in-salt" threshold. With the optimized moderate concentration of 15 m ZnCl2 electrolyte, the KVO exhibits the best cycling stability with similar to 95.02% capacity retention after 1400 cycles. We further design a novel sodium carboxymethyl cellulose (CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm(-1) for the first time and assemble a quasi-solid-state AZIB. This device is bendable with remarkable energy density (268.2 Wh kg(-1)), excellent stability (97.35% after 2800 cycles), low self-discharge rate, and good environmental (temperature, pressure) suitability, and is capable of powering small electronics. The device also exhibits good electrochemical performance with high KVO mass loading (5 and 10 mg cm(-2)). Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries
    Linpo Li
    Shuailei Liu
    Wencong Liu
    Deliang Ba
    Wenyi Liu
    Qiuyue Gui
    Yao Chen
    Zuoqi Hu
    Yuanyuan Li
    Jinping Liu
    Nano-Micro Letters, 2021, 13
  • [2] A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries
    Wang, Xiaowei
    Wang, Liqun
    Zhang, Bao
    Feng, Jianmin
    Zhang, Jiafeng
    Ou, Xing
    Hou, Feng
    Liang, Ji
    JOURNAL OF ENERGY CHEMISTRY, 2021, 59 : 126 - 133
  • [3] Cable-like V2O5 Decorated Carbon Cloth as a High-Capacity Cathode for Flexible Zinc Ion Batteries
    Wang, Yingchao
    Jiang, Guangshen
    Zhang, Zhuo
    Chen, Hanchu
    Li, Yutong
    Kong, Debin
    Qin, Xin
    Li, Yanyan
    Zhang, Xinghao
    Wang, Hui
    ENERGY TECHNOLOGY, 2022, 10 (05)
  • [4] A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries
    Lai, Jianwei
    Tang, Hui
    Zhu, Xiuping
    Wang, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) : 23140 - 23148
  • [5] Spinel Zn3V3O8: A high-capacity zinc supplied cathode for aqueous Zn-ion batteries
    Wu, Jian
    Kuang, Quan
    Zhang, Ke
    Feng, Jingjie
    Huang, Chunmao
    Li, Jiajie
    Fan, Qinghua
    Dong, Youzhong
    Zhao, Yanming
    ENERGY STORAGE MATERIALS, 2021, 41 : 297 - 309
  • [6] Facile synthesis of V 2 O 3 @C nanoribbons by rapid cooling method for high-capacity zinc-ion batteries cathode
    Li, Xiaolei
    Zhang, Jing
    An, Xuguang
    Yao, Weitang
    Kong, Qingquan
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 320
  • [7] Oxygen vacancy H2V3O8 nanowires as high-capacity cathode materials for aqueous zinc-ion batteries
    Li, Xiang
    Chen, Zhiwei
    Li, Yang
    Xu, Yiran
    Bai, Donglong
    Deng, Bin
    Yao, Wei
    Xu, Jianguang
    IONICS, 2024, : 5279 - 5289
  • [8] A layer separated V2O5-PEG-amine hybrid cathode material for high capacity zinc-ion batteries
    Zafar, Saad
    Sharma, Muskan
    Shai, Krithik M. P.
    Karmodak, Naiwrit
    Singh, Santosh K.
    Lochab, Bimlesh
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (47) : 32947 - 32956
  • [9] V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability
    Chen, Hongzhe
    Qin, Haigang
    Chen, Linlin
    Wu, Jian
    Yang, Zhanhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [10] A high-capacity and long-lifespan SnO2@K-MnO2 cathode material for aqueous zinc-ion batteries
    Jin, Xiaoqing
    Qi, Yae
    Xia, Yongyao
    FRONTIERS OF MATERIALS SCIENCE, 2024, 18 (03)