Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries

被引:98
作者
Li, Linpo [1 ,2 ,3 ]
Liu, Shuailei [2 ,3 ]
Liu, Wencong [2 ,3 ]
Ba, Deliang [1 ,2 ,3 ]
Liu, Wenyi [2 ,3 ]
Gui, Qiuyue [2 ,3 ]
Chen, Yao [2 ,3 ]
Hu, Zuoqi [1 ]
Li, Yuanyuan [1 ]
Liu, Jinping [2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[4] Harbin Normal Univ, Sch Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrolyte concentration regulation; Quasi-solid-state Zn ion battery; K0.486V2O5; Large interlayer spacing; Cycling stability; HIGH-PERFORMANCE; ENERGY-STORAGE; SUPERCAPACITORS; VANADATES; OXIDE;
D O I
10.1007/s40820-020-00554-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries (AZIBs) due to their large capacities, good rate performance and facile synthesis in large scale. However, their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes. Herein, taking a new potassium vanadate K0.486V2O5 (KVO) cathode with large interlayer spacing (similar to 0.95 nm) and high capacity as an example, we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte, but with no need to approach "water-in-salt" threshold. With the optimized moderate concentration of 15 m ZnCl2 electrolyte, the KVO exhibits the best cycling stability with similar to 95.02% capacity retention after 1400 cycles. We further design a novel sodium carboxymethyl cellulose (CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm(-1) for the first time and assemble a quasi-solid-state AZIB. This device is bendable with remarkable energy density (268.2 Wh kg(-1)), excellent stability (97.35% after 2800 cycles), low self-discharge rate, and good environmental (temperature, pressure) suitability, and is capable of powering small electronics. The device also exhibits good electrochemical performance with high KVO mass loading (5 and 10 mg cm(-2)). Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.
引用
收藏
页数:14
相关论文
共 53 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor [J].
Bu, Xudong ;
Su, Lijun ;
Dou, Qingyun ;
Lei, Shulai ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7541-7547
[3]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[4]   A Figure of Merit for Flexible Batteries [J].
Chang, Jian ;
Huang, Qiyao ;
Zheng, Zijian .
JOULE, 2020, 4 (07) :1346-1349
[5]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[6]   Layered Potassium Vanadate K0.5V2O5 as a Cathode Material for Nonaqueous Potassium Ion Batteries [J].
Deng, Leqing ;
Niu, Xiaogang ;
Ma, Guanshui ;
Yang, Zhao ;
Zeng, Liang ;
Zhu, Yujie ;
Guo, Lin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (49)
[7]   Safe and high-rate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte [J].
Dou, Qingyun ;
Lei, Shulai ;
Wang, Da-Wei ;
Zhang, Qingnuan ;
Xiao, Dewei ;
Guo, Hongwei ;
Wang, Aiping ;
Yang, Hui ;
Li, Yongle ;
Shi, Siqi ;
Yan, Xingbin .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3212-3219
[8]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[9]   An Aqueous Ca-Ion Battery [J].
Gheytani, Saman ;
Liang, Yanliang ;
Wu, Feilong ;
Jing, Yan ;
Dong, Hui ;
Rao, Karun K. ;
Chi, Xiaowei ;
Fang, Fang ;
Yao, Yan .
ADVANCED SCIENCE, 2017, 4 (12)
[10]   An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode [J].
Guo, Zhaowei ;
Ma, Yuanyuan ;
Dong, Xiaoli ;
Huang, Jianhang ;
Wang, Yonggang ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (36) :11737-11741