Semi-infinite programming

被引:232
作者
Lopez, Marco
Still, Georg
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Univ Alicante, Dept Estadist & Invest Operat, Alicante 03080, Spain
关键词
semi-infinite programming; applications; linear semi-infinite programs; optimality conditions; numerical methods;
D O I
10.1016/j.ejor.2006.08.045
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
A semi-infinite programming problem is an optimization problem in which finitely many variables appear in infinitely many constraints. This model naturally arises in an abundant number of applications in different fields of mathematics, economics and engineering. The paper, which intends to make a compromise between an introduction and a survey, treats the theoretical basis, numerical methods, applications and historical background of the field. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 518
页数:28
相关论文
共 103 条
  • [1] Strong duality for inexact linear programming problems
    Amaya, J
    Gómez, JA
    [J]. OPTIMIZATION, 2001, 49 (03) : 243 - 269
  • [2] ANDERSON EJ, 1985, INFINITE PROGRAMMING
  • [3] Anderson EJ, 1987, LINEAR PROGRAMMING I
  • [4] [Anonymous], INT SERIES NUMERICAL
  • [5] Bank B., 1983, Non-linear Parametric Optimization
  • [6] Bard JF., 1998, Practical Bilevel Optimization. Algorithms and Applications, DOI 10.1007/978-1-4757-2836-1
  • [7] Robust solutions of uncertain linear programs
    Ben-Tal, A
    Nemirovski, A
    [J]. OPERATIONS RESEARCH LETTERS, 1999, 25 (01) : 1 - 13
  • [8] Equilibrium constrained optimization problems
    Birbil, SI
    Bouza, G
    Frenk, JBG
    Still, G
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 169 (03) : 1108 - 1127
  • [9] Optimization problems with perturbations: A guided tour
    Bonnans, JF
    Shapiro, A
    [J]. SIAM REVIEW, 1998, 40 (02) : 228 - 264
  • [10] Bonnans JF., 2013, PERTURBATION ANAL OP