Feasibility of ultra-sensitive 2D layered Hall elements

被引:14
作者
Joo, Min-Kyu [1 ,2 ]
Kim, Joonggyu [1 ,2 ]
Lee, Gwanmu [2 ]
Kim, Hyun [1 ,2 ]
Lee, Young Hee [1 ,2 ]
Suh, Dongseok [2 ]
机构
[1] IBS, Ctr Integrated Nanostruct Phys, Suwon 16419, South Korea
[2] Sungkyunkwan Univ SKKU, Dept Phys, Dept Energy Sci, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
molybdenum disulfide; hexagonal boron nitride; magnetic field sensor; Hall sensitivity; analytical model; MAGNETIC SENSORS; GRAPHENE; PERFORMANCE; FUTURE;
D O I
10.1088/2053-1583/aa735d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Hall effect sensor is an analog transducer that detects a magnetic flux. The general requirements for its high magnetic sensitivity in conventional semiconductors are high carrier mobility and ultrathin conduction channel in the material's and the device's point of view. Recently, graphene Hall elements (GHEs) that satisfy those conditions have been demonstrated with a current-normalized magnetic sensitivity (SI) superior to that of Si-based Hall sensors. Nevertheless, the feasibility of Hall elements based on an atomically thin monolayer transition metal dichalcogenide (TMD) system has not been studied thus far, although such a system would further enable a largely suppressed 2D carrier density. Herein, we show the strategy how to achieve the highest possible SI in a TMD-based Hall element in terms of the device structure as well as the operating bias condition. A monolayer molybdenum disulfide Hall element (MHE) on a hexagonal boron nitride (h-BN) thin film was fabricated, and the best bias conditions were selected based on the analytical model for zero-field transconductance data. Finally, the maximum SI of MHE/h-BN was found to be similar to 3000 V/AT. This work sheds light on the feasibility of TMD-based Hall element systems.
引用
收藏
页数:7
相关论文
共 23 条
[1]  
[Anonymous], PHYS
[2]   High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures [J].
Bando, M. ;
Ohashi, T. ;
Dede, M. ;
Akram, R. ;
Oral, A. ;
Park, S. Y. ;
Shibasaki, I. ;
Handa, H. ;
Sandhu, A. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[3]   Exploration of sensitivity limit for graphene magnetic sensors [J].
Chen, Bingyan ;
Huang, Le ;
Ma, Xiaomeng ;
Dong, Lijun ;
Zhang, Zhiyong ;
Peng, Lian-Mao .
CARBON, 2015, 94 :585-589
[4]   Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride [J].
Dauber, Jan ;
Sagade, Abhay A. ;
Oellers, Martin ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Neumaier, Daniel ;
Stampfer, Christoph .
APPLIED PHYSICS LETTERS, 2015, 106 (19)
[5]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[6]   Velocity saturation in few-layer MoS2 transistor [J].
Fiori, Gianluca ;
Szafranek, Bartholomaeus N. ;
Iannaccone, Giuseppe ;
Neumaier, Daniel .
APPLIED PHYSICS LETTERS, 2013, 103 (23)
[7]  
Ganti Raghu Kiran, 2010, 2010 International Conference on Body Sensor Networks (BSN), P36, DOI 10.1109/BSN.2010.10
[8]   Mobile Crowdsensing: Current State and Future Challenges [J].
Ganti, Raghu K. ;
Ye, Fan ;
Lei, Hui .
IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (11) :32-39
[9]   Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation [J].
He, G. ;
Ghosh, K. ;
Singisetti, U. ;
Ramamoorthy, H. ;
Somphonsane, R. ;
Bohra, G. ;
Matsunaga, M. ;
Higuchi, A. ;
Aoki, N. ;
Najmaei, S. ;
Gong, Y. ;
Zhang, X. ;
Vajtai, R. ;
Ajayan, P. M. ;
Bird, J. P. .
NANO LETTERS, 2015, 15 (08) :5052-5058
[10]   Ultra-sensitive graphene Hall elements [J].
Huang, Le ;
Zhang, Zhiyong ;
Chen, Bingyan ;
Ma, Xiaomeng ;
Zhong, Hua ;
Peng, Lian-Mao .
APPLIED PHYSICS LETTERS, 2014, 104 (18)