VECTOR-VALUED SINGULAR INTEGRALS AND MAXIMAL FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE

被引:106
作者
Grafakos, Loukas [2 ]
Liu, Liguang [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
HARDY-SPACES;
D O I
10.7146/math.scand.a-15099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogeneous type. The approach taken here is based on the theory of vector-valued Calderon-Zygmund singular integral theory in this context, which is appropriately developed.
引用
收藏
页码:296 / 310
页数:15
相关论文
共 17 条