VECTOR-VALUED SINGULAR INTEGRALS AND MAXIMAL FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE

被引:115
作者
Grafakos, Loukas [2 ]
Liu, Liguang [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
HARDY-SPACES;
D O I
10.7146/math.scand.a-15099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogeneous type. The approach taken here is based on the theory of vector-valued Calderon-Zygmund singular integral theory in this context, which is appropriately developed.
引用
收藏
页码:296 / 310
页数:15
相关论文
共 17 条
[1]  
[Anonymous], 1971, PRINCETON MATH SER
[2]  
[Anonymous], 1971, Lecture Notes in Mathematics
[3]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[4]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[5]  
Diestel J., 1977, Vector Measures, Mathematical surveys and monographs, V15
[6]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[7]  
Garcia-Cuerva J., 1985, Weighted Norm Inequalities and Related Topics
[8]  
Grafakos L., 2004, Classical and Modern Fourier Analysis
[9]   Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type [J].
Han, Yongsheng ;
Mueller, Detlef ;
Yang, Dachun .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1505-1537
[10]   A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces [J].
Han, Yongsheng ;
Mueller, Detlef ;
Yang, Dachun .
ABSTRACT AND APPLIED ANALYSIS, 2008,