Frequency Tuning Characteristics of a High-Power Sub-THz Gyrotron with Quasi-Optical Cavity

被引:6
作者
Guan, Xiaotong [1 ,2 ]
Zhang, Jiayi [2 ,3 ]
Fu, Wenjie [2 ,3 ]
Lu, Dun [2 ,3 ]
Yang, Tongbin [2 ,3 ]
Yan, Yang [2 ,3 ]
Yuan, Xuesong [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Terahertz Sci & Technol Key Lab Sichuan Prov, Chengdu 610054, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
gyrotron; quasi-optical cavity; confocal waveguide; frequency tuning; high power; sub-millimeter wave; terahertz;
D O I
10.3390/electronics10050526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by some emerging high-frequency applications, a high-power frequency-tunable sub-THz quasi-optical gyrotron cavity based on a confocal waveguide is designed in this paper. The frequency tuning characteristics of different approaches, including magnetic field tuning, mirror separation adjustment, and hybrid tuning, have been investigated by particle-in-cell (PIC) simulation. Results predict that it is possible to realize a smooth continuous frequency tuning band with an extraordinarily broad bandwidth of 41.55 GHz, corresponding to a relative bandwidth of 18.7% to the center frequency of 0.22 THz. The frequency tunability is provided by varying the separation distance between two mirrors and correspondingly adjusting the external magnetic field. During the frequency tuning, the output power remains higher than 20 kW, which corresponds to an interaction efficiency of 10%. Providing great advantages in terms of broad bandwidth, smooth tuning, and high power, this research may be conducive to the development of high-power frequency-tunable THz gyrotron oscillators.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 28 条
[11]  
Guan X., 2016, TERAHERTZ SCI TECHNO, V9, P166, DOI [10.11906/TST.166-176.2016.12.16, DOI 10.11906/TST.166-176.2016.12.16]
[12]   Experiment of a High-Power Sub-THz Gyrotron Operating in High-Order Axial Modes [J].
Guan, Xiaotong ;
Fu, Wenjie ;
Lu, Dun ;
Yan, Yang ;
Yang, Tongbin ;
Yuan, Xuesong .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (06) :2752-2757
[13]   A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity [J].
Guan, Xiaotong ;
Fu, Wenjie ;
Yan, Yang .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2017, 38 (12) :1457-1470
[14]   140-GHz gyrotron experiments based on a confocal cavity [J].
Hu, W ;
Shapiro, MA ;
Kreischer, KE ;
Temkin, RJ .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) :366-374
[15]   The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy [J].
Idehara, T. ;
Tatematsu, Y. ;
Yamaguchi, Y. ;
Khutoryan, E. M. ;
Kuleshov, A. N. ;
Ueda, K. ;
Matsuki, Y. ;
Fujiwara, T. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2015, 36 (07) :613-627
[16]  
Jawla SK, 2020, IEEE T ELECTRON DEV, V67, P328, DOI [10.1109/TED.2019.2953658, 10.1109/ted.2019.2953658]
[17]   Molecular gas spectroscopy using radioacoustic detection and high-power coherent subterahertz radiation sources [J].
Koshelev, M. A. ;
Tsvetkov, A. I. ;
Morozkin, M. V. ;
Glyavin, M. Yu. ;
Tretyakov, M. Yu. .
JOURNAL OF MOLECULAR SPECTROSCOPY, 2017, 331 :9-16
[18]   Detailed Investigations on a Multisection Cavity for a Continuously Frequency-Tunable Gyrotron [J].
Liu, Diwei ;
Song, Tao ;
Hu, Qiao ;
Huang, Jie ;
Zhang, Yanqing ;
Zhang, Chen ;
Wang, Wei ;
Hu, Min .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (06) :2746-2751
[19]   THz Dynamic Nuclear Polarization NMR [J].
Nanni, Emilio A. ;
Barnes, Alexander B. ;
Griffin, Robert G. ;
Temkin, Richard J. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) :145-163
[20]   Linear theory of frequency pulling in gyrotrons [J].
Nusinovich, Gregory S. ;
Luo, Li ;
Liu, Pu-Kun .
PHYSICS OF PLASMAS, 2016, 23 (05)