Frequency Tuning Characteristics of a High-Power Sub-THz Gyrotron with Quasi-Optical Cavity

被引:6
作者
Guan, Xiaotong [1 ,2 ]
Zhang, Jiayi [2 ,3 ]
Fu, Wenjie [2 ,3 ]
Lu, Dun [2 ,3 ]
Yang, Tongbin [2 ,3 ]
Yan, Yang [2 ,3 ]
Yuan, Xuesong [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Terahertz Sci & Technol Key Lab Sichuan Prov, Chengdu 610054, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
gyrotron; quasi-optical cavity; confocal waveguide; frequency tuning; high power; sub-millimeter wave; terahertz;
D O I
10.3390/electronics10050526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by some emerging high-frequency applications, a high-power frequency-tunable sub-THz quasi-optical gyrotron cavity based on a confocal waveguide is designed in this paper. The frequency tuning characteristics of different approaches, including magnetic field tuning, mirror separation adjustment, and hybrid tuning, have been investigated by particle-in-cell (PIC) simulation. Results predict that it is possible to realize a smooth continuous frequency tuning band with an extraordinarily broad bandwidth of 41.55 GHz, corresponding to a relative bandwidth of 18.7% to the center frequency of 0.22 THz. The frequency tunability is provided by varying the separation distance between two mirrors and correspondingly adjusting the external magnetic field. During the frequency tuning, the output power remains higher than 20 kW, which corresponds to an interaction efficiency of 10%. Providing great advantages in terms of broad bandwidth, smooth tuning, and high power, this research may be conducive to the development of high-power frequency-tunable THz gyrotron oscillators.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 28 条
[1]   EXPERIMENTAL MEASUREMENTS ON A 100 GHZ FREQUENCY TUNABLE QUASI-OPTICAL GYROTRON [J].
ALBERTI, S ;
TRAN, MQ ;
HOGGE, JP ;
TRAN, TM ;
BONDESON, A ;
MUGGLI, P ;
PERRENOUD, A ;
JODICKE, B ;
MATHEWS, HG .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (07) :1654-1661
[2]  
Blank M., 2016, Terahertz Sci. Technol., V9, P177, DOI [DOI 10.11906/TST.177-186.2016.12.17, 10.11906/TST.177-186.2016.12.17]
[3]   Smooth Wideband Frequency Tuning in Low-Voltage Gyrotron With Cathode-End Power Output [J].
Bratman, V. L. ;
Fedotov, A. E. ;
Kalynov, Yu. K. ;
Osharin, I. V. ;
Zavolsky, N. A. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (12) :5147-5150
[4]   Frequency Tuning in a Subterahertz Gyrotron With a Variable Cavity [J].
Bratman, Vladimir L. ;
Kalynov, Yuriy K. ;
Kalynova, Galina I. ;
Manuilov, Vladimir N. ;
Makhalov, Petr B. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (10) :3529-3533
[5]   Frequency tunable gyrotron using backward-wave components [J].
Chang, T. H. ;
Idehara, T. ;
Ogawa, I. ;
Agusu, L. ;
Kobayashi, S. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
[6]   The electron cyclotron maser [J].
Chu, KR .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :489-540
[7]   Generating High-Power Continuous-Frequency Tunable Sub-Terahertz Radiation From a Quasi-Optical Gyrotron With Confocal Waveguide [J].
Fu, Wenjie ;
Guan, Xiaotong ;
Yan, Yang .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (04) :613-616
[8]   The design of the 394.6 Ghz continuously tunable coaxial gyrotron for DNP spectroscopy [J].
Glyavin, M. ;
Khizhnyak, V. ;
Luchinin, A. ;
Idehara, T. ;
Saito, T. .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 29 (07) :641-648
[9]   High-power terahertz sources for spectroscopy and material diagnostics [J].
Glyavin, M. Yu ;
Denisov, G. G. ;
Zapevalov, V. E. ;
Koshelev, M. A. ;
Tretyakov, M. Yu ;
Tsvetkov, A. I. .
PHYSICS-USPEKHI, 2016, 59 (06) :595-604
[10]   SMOOTH WIDEBAND TUNING OF THE OPERATING FREQUENCY OF A GYROTRON [J].
Glyavin, M. Yu. ;
Luchinin, A. G. ;
Morozkin, M. V. ;
Khizhnyak, V. I. .
RADIOPHYSICS AND QUANTUM ELECTRONICS, 2008, 51 (01) :57-63