Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images

被引:88
作者
Rusko, Laszlo [1 ]
Bekes, Gyoergy [1 ]
Fidrich, Marta [1 ]
机构
[1] GE Hungary Healthcare Div, H-6725 Szeged, Hungary
关键词
Automatic segmentation; Contrast-enhanced CT; Multi-phase images; Region-growing; Liver contouring;
D O I
10.1016/j.media.2009.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of contrast-enhanced abdominal CT images is required by many clinical applications of computer aided diagnosis and therapy planning. The research on automated methods involves different organs among which the liver is the most emphasized. In the current clinical practice more images (at different phases) are acquired from the region of interest in case of a contrast-enhanced abdominal CT examination. The majority of the existing methods, however, use only the portal-venous image to segment the liver. This paper presents a method that automatically segments the liver by combining more phases of the contrast-enhanced CT examination. The method uses region-growing facilitated by pre- and post-processing functions, which incorporate anatomical and multi-phase information to eliminate over-and under-segmentation. Another method, which uses only the portal-venous phase to segment the liver automatically, is also presented. Both methods were evaluated using different datasets, which showed that the result of multi-phase method can be used without or after minor correction in nearly 94% of the cases, and the single-phase method can provide result comparable with non-expert manual segmentation in 90% of the cases. The comparison of the two methods demonstrates that automatic segmentation is more reliable when the information of more phases is combined. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 31 条
[1]  
[Anonymous], LECT NOTES COMPUTER
[2]  
Bekes G., 2007, Proc. International Journal of Computer Assisted Radiology and Surgery, V2, P45
[3]  
Chi Y., 2007, Proc MICCAI Workshop on 3D Segmentation in the Clinic: a Grand Challenge, P167
[4]  
DAISUKE F, 2007, MICCAI 2007 WORKSH P, P117
[5]  
Duda D., 2006, Biocybernetics and Biomedical Engineering, V26, P15
[6]  
Ginneken BV, 2007, MICCAI 2007 Workshop Proceedings: 3D Segmentation in the Clinic-A Grand Challenge
[7]  
Heimann T, 2006, LECT NOTES COMPUT SC, V4191, P41
[8]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265
[9]   Liver segmentation in living liver transplant donors: Comparison of semiautomatic and manual methods [J].
Hermoye, L ;
Laamari-Azjal, I ;
Cao, ZJ ;
Annet, L ;
Lerut, J ;
Dawant, BM ;
Van Beers, BE .
RADIOLOGY, 2005, 234 (01) :171-178
[10]  
Kainmuller D., 2007, P MICCAI WORKSH 3D S, V109, P116