Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators

被引:80
作者
Lorch, Niels [1 ]
Nigg, Simon E. [1 ]
Nunnenkamp, Andreas [2 ]
Tiwari, Rakesh P. [1 ,3 ]
Bruder, Christoph [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
关键词
SPONTANEOUS-EMISSION LASER; MULTIPLICATIVE NOISE; DYNAMICS;
D O I
10.1103/PhysRevLett.118.243602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.
引用
收藏
页数:6
相关论文
共 51 条
[1]   Mutual information as an order parameter for quantum synchronization [J].
Ameri, V. ;
Eghbali-Arani, M. ;
Mari, A. ;
Farace, A. ;
Kheirandish, F. ;
Giovannetti, V. ;
Fazio, R. .
PHYSICAL REVIEW A, 2015, 91 (01)
[2]  
[Anonymous], ARXIV161005060
[3]  
Balanov A, 2009, SPRINGER SER SYNERG, P1
[4]   Non-orthogonal positive operator valued measure phase distributions of one- and two-mode electromagnetic fields [J].
Barak, R ;
Ben-Aryeh, Y .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (05) :123-134
[5]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[6]   Coupled quantized mechanical oscillators [J].
Brown, K. R. ;
Ospelkaus, C. ;
Colombe, Y. ;
Wilson, A. C. ;
Leibfried, D. ;
Wineland, D. J. .
NATURE, 2011, 471 (7337) :196-199
[7]   Synchronization of micromasers [J].
Davis-Tilley, C. ;
Armour, A. D. .
PHYSICAL REVIEW A, 2016, 94 (06)
[8]   Parallel Transport Quantum Logic Gates with Trapped Ions [J].
de Clercq, Ludwig E. ;
Lo, Hsiang-Yu ;
Marinelli, Matteo ;
Nadlinger, David ;
Oswald, Robin ;
Negnevitsky, Vlad ;
Kienzler, Daniel ;
Keitch, Ben ;
Home, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2016, 116 (08)
[9]  
Dykman Mark, 2012, Fluctuating Nonlinear Oscillators: From Nanomechanics to Quantum Superconducting Circuits
[10]   Mode locking and mode competition in a nonequilibrium solid-state condensate [J].
Eastham, P. R. .
PHYSICAL REVIEW B, 2008, 78 (03)