Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies

被引:86
作者
Zhang, Hao Chi [1 ,2 ]
Zhang, Qian [1 ,2 ]
Liu, Jun Feng [1 ,2 ]
Tang, Wenxuan [1 ,2 ]
Fan, Yifeng [1 ,2 ]
Cui, Tie Jun [1 ,3 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Synerget Innovat Ctr Wireless Commun Technol, Nanjing 210096, Jiangsu, Peoples R China
[3] Cooperat Innovat Ctr Terahertz Sci, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-PLASMON POLARITONS; BROAD-BAND; EXPERIMENTAL-VERIFICATION; METAMATERIAL; METAL; BREAKING;
D O I
10.1038/srep23396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[2]   Symmetry breaking in a plasmonic metamaterial at optical wavelength [J].
Christ, Andre ;
Martin, Olivier J. F. ;
Ekinci, Yasin ;
Gippius, Nikolai A. ;
Tikhodeev, Sergei G. .
NANO LETTERS, 2008, 8 (08) :2171-2175
[3]   LOSSES OF MICROSTRIP LINES [J].
DENLINGER, EJ .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1980, 28 (06) :513-522
[4]   Surfaces with holes in them:: new plasmonic metamaterials [J].
Garcia-Vidal, FJ ;
Martín-Moreno, L ;
Pendry, JB .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (02) :S97-S101
[5]   Fundamental Limitations to Gain Enhancement in Periodic Media and Waveguides [J].
Grgic, Jure ;
Ott, Johan Raunkjr ;
Wang, Fengwen ;
Sigmund, Ole ;
Jauho, Antti-Pekka ;
Mork, Jesper ;
Mortensen, N. Asger .
PHYSICAL REVIEW LETTERS, 2012, 108 (18)
[6]   Experimental verification of designer surface plasmons [J].
Hibbins, AP ;
Evans, BR ;
Sambles, JR .
SCIENCE, 2005, 308 (5722) :670-672
[7]   Spoof plasmon analogue of metal-insulator-metal waveguides [J].
Kats, Mikhail A. ;
Woolf, David ;
Blanchard, Romain ;
Yu, Nanfang ;
Capasso, Federico .
OPTICS EXPRESS, 2011, 19 (16) :14860-14870
[8]   Surface plasmon-like modes on structured perfectly conducting surfaces [J].
Lan, Yung-Chiang ;
Chern, Ruey-Lin .
OPTICS EXPRESS, 2006, 14 (23) :11339-11347
[9]   Invisible plasmonic meta-materials through impedance matching to vacuum [J].
Lee, JW ;
Seo, MA ;
Sohn, JY ;
Ahn, YH ;
Kim, DS ;
Jeoung, SC ;
Lienau, C ;
Park, QH .
OPTICS EXPRESS, 2005, 13 (26) :10681-10687
[10]   Individual Nanoantennas Loaded with Three-Dimensional Optical Nanocircuits [J].
Liu, Na ;
Wen, Fangfang ;
Zhao, Yang ;
Wang, Yumin ;
Nordlander, Peter ;
Halas, Naomi J. ;
Alu, Andrea .
NANO LETTERS, 2013, 13 (01) :142-147