Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)

被引:26
作者
Cao, Huai-Xin [1 ]
Lv, Ji-Rong [1 ]
Rassias, J. M. [2 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
[2] Natl & Capodistrian Univ Athens, Sect Math & Informat, Pedag Dept, Athens 15342, Greece
关键词
HYERS-ULAM STABILITY; TERNARY DERIVATIONS; FUNCTIONAL-EQUATION; ADDITIVE MAPPINGS; ALGEBRAS;
D O I
10.1155/2009/718020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let A be a Banach algebra and X a Banach A-module, f : X -> X and g : A -> A. The mappings Delta(1)(f,g), Delta(2)(f,g), Delta(3)(f,g), and Delta(4)(f,g) are defined and it is proved that if parallel to Delta(1)(f,g) (x, y, z, w)parallel to (resp., parallel to Delta(3)(f,g) (x, y, z, w, alpha, beta)parallel to) is dominated by phi(x, y, z, w), then f is a generalized (resp., linear) module-A left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if parallel to Delta(2)(f,g) (x, y, z, w)parallel to (resp., parallel to Delta(4)(f,g) (x, y, z, w, alpha, beta)parallel to) is dominated by phi(x, y, z, w), then f is a generalized (resp., linear) module-A derivation and g is a (resp., linear) module-X derivation. Copyright (c) 2009 Huai-Xin Cao et al.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Some results on stability of extended derivations [J].
Amyari, M. ;
Rahbarnia, F. ;
Sadeghi, Gh. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) :753-758
[2]   Nearly ternary derivations [J].
Amyari, Maryam ;
Baak, Choonkil ;
Moslehian, Mohammad Sal .
TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05) :1417-1424
[3]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[4]  
[Anonymous], 2006, DEMONSTR MATH
[5]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[6]   On approximate derivations [J].
Badora, R .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (01) :167-173
[7]   On approximate ring homomorphisms [J].
Badora, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :589-597
[8]  
BAKER JA, 1980, P AM MATH SOC, V80, P411, DOI 10.2307/2043730
[10]   ON LEFT DERIVATIONS AND RELATED MAPPINGS [J].
BRESAR, M ;
VUKMAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :7-16