The Bernstein constant and polynomial interpolation at the Chebyshev nodes

被引:21
作者
Ganzburg, MI [1 ]
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
关键词
Lagrange interpolation; Chebyshev nodes; Bernstein constant;
D O I
10.1006/jath.2002.3729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish new asymptotic relations for the errors of approximation in L-p [-1,1], 0 <p ≤ ∞, of \x\(λ), λ > 0, by the Lagrange interpolation polynomials at the Chebyshev nodes of the first and second kind. As a corollary, we show that the Bernstein constant [GRAPHICS] is finite for lambda > 0 and p is an element of (1/3, infinity). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:193 / 213
页数:21
相关论文
共 24 条
[1]  
Bernstein S., 1914, Acta Mathematica, V37, P1, DOI DOI 10.1007/BF02401828
[2]  
BERNSTEIN S, 1938, B ACAD SCI USSR M, V2, P181
[3]  
BERNSTEIN SN, 1937, EXTREMAL PROPERTIES
[4]  
BERNSTEIN SN, 1946, DOKL AKAD NAUK SSSR, V54, P479
[5]  
BERNSTEIN SN, 1954, COLLECT WORKS, V2, P273
[6]   ON THE DIVERGENCE OF LAGRANGE INTERPOLATION TO VERTICAL-BAR-X-VERTICAL-BAR [J].
BRUTMAN, L ;
PASSOW, E .
JOURNAL OF APPROXIMATION THEORY, 1995, 81 (01) :127-135
[7]   ON LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES [J].
BYRNE, GJ ;
MILLS, TM ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (01) :81-89
[8]  
GANZBURG MI, 2001, TRENDS APPROXIMATION
[9]  
GANZBURG MI, 1995, APPROXIMATION THEORY, V1, P223
[10]  
GANZBURG MI, 2000, HDB ANAL COMPUTATION, P507