Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts

被引:27
作者
Amler, Anna-Klara [1 ,2 ]
Dinkelborg, Patrick H. [3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Schlauch, Domenic [1 ,2 ]
Spinnen, Jacob [7 ,8 ,9 ,10 ]
Stich, Stefan [7 ,8 ,9 ,10 ]
Lauster, Roland [1 ]
Sittinger, Michael [7 ,8 ,9 ,10 ]
Nahles, Susanne [3 ,4 ,5 ,6 ]
Heiland, Max [3 ,4 ,5 ,6 ]
Kloke, Lutz [2 ]
Rendenbach, Carsten [3 ,4 ,5 ,6 ]
Beck-Broichsitter, Benedicta [3 ,4 ,5 ,6 ]
Dehne, Tilo [7 ,8 ,9 ,10 ]
机构
[1] Tech Univ Berlin, Dept Med Biotechnol, D-13355 Berlin, Germany
[2] Cellbricks GmbH, D-13355 Berlin, Germany
[3] Charite Univ Med Berlin, D-13353 Berlin, Germany
[4] Free Univ Berlin, D-13353 Berlin, Germany
[5] Humboldt Univ, Dept Oral & Maxillofacial Surg, D-13353 Berlin, Germany
[6] Berlin Inst Hlth, D-13353 Berlin, Germany
[7] Charite Univ Med Berlin, D-10117 Berlin, Germany
[8] Free Univ Berlin, D-10117 Berlin, Germany
[9] Humboldt Univ, Dept Rheumatol, D-10117 Berlin, Germany
[10] Berlin Inst Hlth, D-10117 Berlin, Germany
关键词
bioprinting; tissue engineering; gelatin methacrylate; regenerative medicine; segmental bone defect; mesenchymal progenitor cell; osteogenic differentiation; stereolithography; biomaterial; PERIOSTEUM-DERIVED CELLS; STEM-CELLS; CHEMOKINE RECEPTORS; HUMAN OSTEOBLASTS; FREE-FLAP; MIGRATE; GELATIN; CCL25; STIMULATION; DEFECTS;
D O I
10.3390/ijms22020796
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 70 条
[1]  
Almela T, 2018, TISSUE ENG PART C-ME, V24, P99, DOI [10.1089/ten.tec.2017.0370, 10.1089/ten.TEC.2017.0370]
[2]   Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions [J].
Altmann, Brigitte ;
Loechner, Anne ;
Swain, Michael ;
Kohal, Ralf-Joachim ;
Giselbrecht, Stefan ;
Gottwald, Eric ;
Steinberg, Thorsten ;
Tomakidi, Pascal .
BIOMATERIALS, 2014, 35 (10) :3208-3219
[3]  
Atala AnthonyJames J. Yoo., 2015, ESSENTIALS 3D BIOFAB
[4]  
Baltazar T, 2020, TISSUE ENG PT A, V26, P227, DOI [10.1089/ten.TEA.2019.0201, 10.1089/ten.tea.2019.0201]
[5]   3D-tracking the regenerative potential of the mandible with micro-CTs [J].
Beck-Broichsitter B.E. ;
Garling A. ;
Koehne T. ;
Barvencik F. ;
Smeets R. ;
Mehl C. ;
Jeschke A. ;
Wiltfang J. ;
Becker S.T. .
Oral and Maxillofacial Surgery, 2015, 19 (1) :29-35
[6]   Concise Review: The Periosteum: Tapping into a Reservoir of Clinically Useful Progenitor Cells [J].
Chang, Hana ;
Tate, Melissa L. Knothe .
STEM CELLS TRANSLATIONAL MEDICINE, 2012, 1 (06) :480-491
[7]   Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting [J].
Chiesa, Irene ;
De Maria, Carmelo ;
Lapomarda, Anna ;
Fortunato, Gabriele Maria ;
Montemurro, Francesca ;
Di Gesu, Roberto ;
Tuan, Rocky S. ;
Vozzi, Giovanni ;
Gottardi, Riccardo .
BIOFABRICATION, 2020, 12 (02)
[8]   A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing [J].
Czekanska, E. M. ;
Stoddart, M. J. ;
Ralphs, J. R. ;
Richards, R. G. ;
Hayes, J. S. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (08) :2636-2643
[9]   3D printed microchannel networks to direct vascularisation during endochondral bone repair [J].
Daly, Andrew C. ;
Pitacco, Pierluca ;
Nulty, Jessica ;
Cunniffe, Grainne M. ;
Kelly, Daniel J. .
BIOMATERIALS, 2018, 162 :34-46
[10]   3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering [J].
Daly, Andrew C. ;
Cunniffe, Grainne M. ;
Sathy, Binulal N. ;
Jeon, Oju ;
Alsberg, Eben ;
Kelly, Daniel J. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (18) :2353-2362