New multicollinearity indicators in linear regression models

被引:31
作者
Curto, Jose Dias [1 ]
Pinto, Jose Castro [1 ]
机构
[1] ISCTE Business Sch, Dept Quantitat Methods, P-1600189 Lisbon, Portugal
关键词
multiple linear regression; multicollinearity indicators; path analysis;
D O I
10.1111/j.1751-5823.2007.00007.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlation is an important statistical issue for the Ordinary Least Squares estimates and for data-reduction techniques, such as the Factor and the Principal Components analyses. In this paper we propose new indicators for the multicollinearity problem in the multiple linear regression model.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 10 条
[1]  
[Anonymous], ECONOMETRICS
[2]  
Belsey D.A., 1980, Regression Diagnostics Identifying Influential Data and Sources of Collinearity
[3]  
Dillon W.R., 1984, MULTIVARIATE ANAL ME
[4]  
Greene W.H., 2000, ECONOMETRIC ANAL
[5]  
Johnson RA., 2007, APPL MULTIVARIATE ST
[6]  
Kovács P, 2005, INT STAT REV, V73, P405
[7]  
MONTGOMERY D, 1999, HDB STAT METHODS ENG
[8]  
MONTGOMERY DC, 1981, AIIE T, V13, P102, DOI 10.1080/05695558108974542
[9]  
SENETA E, 1985, ENCY STATISTICAL SCI, V6, P635
[10]   The problem of near-multicollinearity revisited: erratic vs systematic volatility [J].
Spanos, A ;
McGuirk, A .
JOURNAL OF ECONOMETRICS, 2002, 108 (02) :365-393