Cohomological and numerical dynamical degrees on abelian varieties

被引:5
作者
Hu, Fei [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
关键词
dynamical degree; abelian variety; endomorphism algebra; stale cohomology; algebraic cycle; positive characteristic;
D O I
10.2140/ant.2019.13.1941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for a self-morphism of an abelian variety defined over an algebraically closed field of arbitrary characteristic, the second cohomological dynamical degree coincides with the first numerical dynamical degree.
引用
收藏
页码:1941 / 1958
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1968, 10 EXPOSES COHOMOLOG
[2]   Some remarks concerning the Grothendieck period conjecture [J].
Bost, Jean-Benoit ;
Charles, Francois .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 714 :175-208
[3]  
Deligne P., 1974, I HAUTES ETUDES SCI, V43, P273, DOI 10.1007/BF02684373
[4]   Equidistribution problems in complex dynamics of higher dimension [J].
Dinh, Tien-Cuong ;
Sibony, Nessim .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)
[5]  
Esnault H, 2013, OSAKA J MATH, V50, P827
[6]  
Gromov Mikhail, 2003, Enseign. Math., V49, P217
[7]  
Hu F., MATH ANN
[8]   CONSEQUENCES OF RIEMANN HYPOTHESIS FOR VARIETIES OVER FINITE-FIELDS [J].
KATZ, NM ;
MESSING, W .
INVENTIONES MATHEMATICAE, 1974, 23 (01) :73-77
[9]  
Lee H.C., 1949, Proc. RIA. Sect. A, V52, P253
[10]   THE CRITERIA FOR ALGEBRAIC EQUIVALENCE AND THE TORSION GROUP [J].
MATSUSAKA, T .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :53-66