Plasmon scanned surface-enhanced Raman scattering excitation profiles

被引:0
作者
Haynes, CL [1 ]
Van Duyne, RP [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
来源
FUNCTIONAL NANOSTRUCTURED MATERIALS THROUGH MULTISCALE ASSEMBLY AND NOVEL PATTERNING TECHNIQUES | 2002年 / 728卷
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since the discovery of surface-enhanced Raman spectroscopy (SERS) in 1977, scientists have come to understand the enhancement mechanism, but have been unable to consistently optimize the weak signals inherent in Raman experiments. Surface-enhanced Raman signals originate from excitation of the localized surface plasmon resonance (LSPR) of a nanostructured metal surface, thus producing concentrated electromagnetic fields at the surface of the nanostructure. Design of the nanostructured metal substrate plays an important role in understanding and optimizing SERS experiments. In this research, the size-dependent optical properties accessible by nanosphere lithography (NSL) are exploited to fabricate topographically predictable SERS-active substrates with systematically varying LSPRs. Correlated microextinction and micro-Raman measurements, as well as quantitative implementation of a Raman standard, allow significant improvements over the current method used to optimize SERS experiments. The knowledge gained in the novel plasmon scanned SERS excitation profiles clearly indicates the substrate parameters necessary for experimental optimization and promotes further understanding of the SERS enhancement mechanism.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 50 条
[31]   Raman and Surface-enhanced Raman Scattering of Chlorophenols [J].
SONG Wei1 .
ChemicalResearchinChineseUniversities, 2011, 27 (05) :854-856
[32]   Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis [J].
Ten, Andrey ;
Lomonosov, Vladimir ;
Boukouvala, Christina ;
Ringe, Emilie .
ACS NANO, 2024, 18 (28) :18785-18799
[33]   Plasmon focusing in short gold sphere nanochains for surface-enhanced Raman scattering [J].
Delange, Pascal ;
Ho, Ya-Lun ;
Delaunay, Jean-Jacques .
APPLIED OPTICS, 2013, 52 (36) :8809-8816
[34]   Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures [J].
Kahl, M ;
Voges, E .
PHYSICAL REVIEW B, 2000, 61 (20) :14078-14088
[35]   Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals [J].
Mueller, Niclas S. ;
Pfitzner, Emanuel ;
Okamura, Yu ;
Gordeev, Georgy ;
Kusch, Patryk ;
Lange, Holger ;
Heberle, Joachim ;
Schulz, Florian ;
Reich, Stephanie .
ACS NANO, 2021, 15 (03) :5523-5533
[36]   A Review on Surface-Enhanced Raman Scattering [J].
Pilot, Roberto ;
Signorini, Raffaella ;
Durante, Christian ;
Orian, Laura ;
Bhamidipati, Manjari ;
Fabris, Laura .
BIOSENSORS-BASEL, 2019, 9 (02)
[37]   Surface-enhanced Raman scattering holography [J].
Matz Liebel ;
Nicolas Pazos-Perez ;
Niek F. van Hulst ;
Ramon A. Alvarez-Puebla .
Nature Nanotechnology, 2020, 15 :1005-1011
[38]   SURFACE-ENHANCED RAMAN-SCATTERING [J].
BOERIO, FJ .
THIN SOLID FILMS, 1989, 181 :423-433
[39]   Surface-enhanced Raman scattering of flavonoids [J].
Jurasekova, Z. ;
Garcia-Ramos, J. V. ;
Domingo, C. ;
Sanchez-Cortes, S. .
JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) :1239-1241
[40]   Surface-enhanced Raman scattering and biophysics [J].
Kneipp, K ;
Kneipp, H ;
Itzkan, I ;
Dasari, RR ;
Feld, MS .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) :R597-R624