Metal-organic frameworks vs. buffers: case study of UiO-66 stability

被引:122
作者
Buzek, Daniel [1 ,2 ]
Adamec, Slavomir [2 ]
Lang, Kamil [1 ]
Demel, Jan [1 ]
机构
[1] Czech Acad Sci, Inst Inorgan Chem, Husinec Rez 25068, Czech Republic
[2] Univ JE Purkyne, Fac Environm, Usti Nad Labem 40096, Czech Republic
关键词
WATER STABILITY; HYDROLYSIS; MECHANISMS; ADSORPTION; DELIVERY;
D O I
10.1039/d0qi00973c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
UiO-66 is a zirconium-based metal-organic framework (MOF) that has numerous applications. Our group recently determined that UiO-66 is not as inert in aqueous dispersions as previously reported in the literature. The present work therefore assessed the behaviour of UiO-66 in buffers: 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), 4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid (HEPES), N-ethylmorpholine (NEM) and phosphate buffer (PB), all of which are commonly used in many UiO-66 applications. High performance liquid chromatography and inductively coupled plasma mass spectrometry were used to monitor degradation of the MOF at 25 degrees C. In each buffer, the terephthalate linker was released to some extent. The chemical nature of the buffer media played a decisive role in the stability with a more pronounced leaching effect in the saline forms of these buffers. The HEPES buffer was found to be the most benign, whereas NEM and PB should be avoided at any concentration as they were shown to rapidly degrade the UiO-66 framework. Low concentration TRIS buffers are also recommended, although these offer minimal buffer capacity to adjust pH. Regardless of the buffer used, rapid terephthalate release was observed, indicating that the UiO-66 was attacked immediately after mixing with the buffer. This process was even more pronounced at 37 degrees C, i.e., at typical temperature in biological and medical applications. In addition, the dissolution of zirconium, observed in some cases, intensified the UiO-66 decomposition process. These results demonstrate that sensitive analytical techniques have to be used to monitor the release of MOF components so as to quantify the stabilities of these materials in liquid environments.
引用
收藏
页码:720 / 734
页数:15
相关论文
共 62 条
[1]   Topotactic Transformations of Metal Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration [J].
Abney, Carter W. ;
Taylor-Pashow, Kathryn M. L. ;
Russell, Shane R. ;
Chen, Yuan ;
Samantaray, Raghabendra ;
Lockard, Jenny V. ;
Lin, Wenbin .
CHEMISTRY OF MATERIALS, 2014, 26 (18) :5231-5243
[2]   Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J].
Bai, Yan ;
Dou, Yibo ;
Xie, Lin-Hua ;
Rutledge, William ;
Li, Jian-Rong ;
Zhou, Hong-Cai .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (08) :2327-2367
[3]   Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013) [J].
Batten, Stuart R. ;
Champness, Neil R. ;
Chen, Xiao-Ming ;
Garcia-Martinez, Javier ;
Kitagawa, Susumu ;
Ohrstrom, Lars ;
O'Keeffe, Michael ;
Suh, Myunghyun Paik ;
Reedijk, Jan .
PURE AND APPLIED CHEMISTRY, 2013, 85 (08) :1715-1724
[4]   Understanding the Colloidal Stability of the Mesoporous MIL-100(Fe) Nanoparticles in Physiological Media [J].
Bellido, Elena ;
Guillevic, Mazheva ;
Hidalgo, Tania ;
Santander-Ortega, Manuel J. ;
Serre, Christian ;
Horcajada, Patricia .
LANGMUIR, 2014, 30 (20) :5911-5920
[5]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[6]   Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation [J].
Buzek, Daniel ;
Demel, Jan ;
Lang, Kamil .
INORGANIC CHEMISTRY, 2018, 57 (22) :14290-14297
[7]   Nanoscaled porphyrinic metal-organic frameworks: photosensitizer delivery systems for photodynamic therapy [J].
Buzek, Daniel ;
Zelenka, Jaroslav ;
Ulbrich, Pavel ;
Ruml, Tomas ;
Krizova, Ivana ;
Lang, Jan ;
Kubat, Pavel ;
Demel, Jan ;
Kirakci, Kaplan ;
Lang, Kamil .
JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (09) :1815-1821
[8]   Water adsorption in MOFs: fundamentals and applications [J].
Canivet, Jerome ;
Fateeva, Alexandra ;
Guo, Youmin ;
Coasne, Benoit ;
Farrusseng, David .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5594-5617
[9]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[10]   Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs [J].
Chen, Zhijie ;
Hanna, Sylvia L. ;
Redfern, Louis R. ;
Alezi, Dalal ;
Islamoglu, Timur ;
Farha, Omar K. .
COORDINATION CHEMISTRY REVIEWS, 2019, 386 :32-49