Approximation of insurance liability contracts using radial basis functions

被引:1
|
作者
Singor, Stefan N. [1 ,2 ]
Schols, Eric [1 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Ortec Finance, Boompjes 40, NL-3011 XB Rotterdam, Netherlands
[2] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
[3] CWI Natl Res Inst Math & Comp Sci, Amsterdam, Netherlands
关键词
Radial basis function; nested simulation; solvency II; insurance; BASIS FUNCTION INTERPOLATION; PARAMETER; ALGORITHM;
D O I
10.1080/00207160.2019.1581176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the Option Interpolation Model (OIM) for accurate approximation of embedded option values in insurance liabilities. Accurate approximation is required for ex-ante risk management applications. The OIM is based on interpolation with radial basis functions, which can interpolate scattered data, and does not suffer from the curse of dimensionality. To reduce computation time we present an inversion method to determine the interpolation function weights. The robustness, accuracy and efficiency of the OIM are investigated in several numerical experiments. We show that the OIM results in highly accurate approximations.
引用
收藏
页码:2245 / 2271
页数:27
相关论文
共 50 条
  • [21] On lower bounds in radial basis approximation
    V. Maiorov
    Advances in Computational Mathematics, 2005, 22 : 103 - 113
  • [22] Robustness of radial basis functions
    Eickhoff, Ralf
    Rueckert, Ulrich
    NEUROCOMPUTING, 2007, 70 (16-18) : 2758 - 2767
  • [23] Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs
    Chernih, A.
    Le Gia, Q. T.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 569 - 591
  • [24] A non-stationary approximation scheme on scattered centers in Rd by radial basis functions
    Yoon, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 163 - 175
  • [25] Efficient Speed-Up of Radial Basis Functions Approximation and Interpolation Formula Evaluation
    Smolik, Michal
    Skala, Vaclav
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 165 - 176
  • [26] Data compression on the sphere using multiscale radial basis function approximation
    Q. T. Le Gia
    H. Wendland
    Advances in Computational Mathematics, 2014, 40 : 923 - 943
  • [27] Implicit fitting using radial basis functions with ellipsoid constraint
    Li, Q
    Wills, D
    Phillips, R
    Viant, WJ
    Griffiths, JG
    Ward, J
    COMPUTER GRAPHICS FORUM, 2004, 23 (01) : 55 - 69
  • [28] SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS
    Pham, T. D.
    Tran, T.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 473 - 485
  • [29] On the formulation of credit barrier model using radial basis functions
    Tung, Humphrey K. K.
    Wong, Michael C. S.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2014, 65 (09) : 1437 - 1452
  • [30] Parallel Stochastic Global Optimization Using Radial Basis Functions
    Regis, Rommel G.
    Shoemaker, Christine A.
    INFORMS JOURNAL ON COMPUTING, 2009, 21 (03) : 411 - 426