Complete global stability for an SIR epidemic model with delay - Distributed or discrete

被引:350
作者
McCluskey, C. Connell [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
关键词
Delay; Distributed delay; Global stability; Lyapunov functional; INFECTIOUS-DISEASES; TIME DELAYS;
D O I
10.1016/j.nonrwa.2008.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
SIR models With distributed delay and with discrete delay are studied. The global dynamics are fully determined for R(0) > 1 by using a Lyapunov functional. For each model it is shown that the endemic equilibrium is globally asymptotically stable whenever it exists. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 59
页数:5
相关论文
共 10 条
[1]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[2]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[3]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[4]   Global dynamics of a staged progression model for infectious diseases [J].
Guo, Hongbin ;
Li, Michael Y. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (03) :513-525
[5]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[6]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[7]   Global stability of an SIR epidemic model with time delay [J].
Ma, WB ;
Mei, S ;
Takeuchi, Y .
APPLIED MATHEMATICS LETTERS, 2004, 17 (10) :1141-1145
[8]   Permanence of an SIR epidemic model with distributed time delays [J].
Ma, WB ;
Takeuchi, Y ;
Hara, T ;
Beretta, E .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (04) :581-591
[9]  
MCCLUSKEY CC, GLOBAL STABILI UNPUB
[10]   Global asymptotic properties of a delay SIR epidemic model with finite incubation times [J].
Takeuchi, Y ;
Ma, WB ;
Beretta, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (06) :931-947