Transcendental Brauer groups of products of CM elliptic curves

被引:12
作者
Newton, Rachel [1 ]
机构
[1] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2016年 / 93卷
关键词
ABELIAN-VARIETIES; MANIN OBSTRUCTION; GOOD REDUCTION; SURFACES;
D O I
10.1112/jlms/jdv058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O-K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface E x E. The results for the odd-order torsion also apply to the Brauer group of the K3 surface Kum(E x E). We describe explicitly the elliptic curves E/Q with complex multiplication by O-K such that the Brauer group of E x E contains a transcendental element of odd order. We show that such an element gives rise to a Brauer Manin obstruction to weak approximation on Kum(E x E), while there is no obstruction coming from the algebraic part of the Brauer group.
引用
收藏
页码:397 / 419
页数:23
相关论文
共 25 条
[1]  
[Anonymous], 1983, Fundamental Principles of Mathematical Sciences
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
CASSELS J. W. S., 2010, ALGEBRAIC NUMBER THE
[4]  
Colliot-Thélène JL, 2013, T AM MATH SOC, V365, P579
[5]   Galois descent on the Brauer group [J].
Colliot-Thelene, Jean-Louis ;
Skorobogatov, Alexei N. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 682 :141-165
[6]  
Cox D., 1989, Primes of the Form x2 + ny2: Fermat, Class Field Theory and Complex Multiplication
[7]  
Grothendieck A., 1968, 10 EXPOSES COHOMOLOG, V3, P67
[8]  
Harari D., 1996, London Math. Soc. Lecture Note Ser., V235, P75
[9]   Transcendental obstructions to weak approximation on general K3 surfaces [J].
Hassett, Brendan ;
Varilly-Alvarado, Anthony ;
Varilly, Patrick .
ADVANCES IN MATHEMATICS, 2011, 228 (03) :1377-1404
[10]  
Ieronymou E, 2015, ADV MATH, V270, P181, DOI [10.1016/j.aim.2014.11.004, 10.1016/j.aim.2016.05.014]