Riemann surfaces with orbifold points

被引:7
作者
Chekhov, L. O. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Lab JV Poncelet, Moscow 119002, Russia
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
TEICHMULLER SPACE; CLUSTER ALGEBRAS; GRAVITY;
D O I
10.1134/S0081543809030146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We interpret the previously developed Teichmuller theory of surfaces with marked points on boundary components (bordered surfaces) as the Teichmuller theory of Riemann surfaces with orbifold points of order 2. In the Poincar, uniformization pattern, we describe necessary and sufficient conditions for the group generated by the Fuchsian group of the surface with added inversions to be of the almost hyperbolic Fuchsian type. All the techniques elaborated for the bordered surfaces (quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebra of geodesic functions) are equally applicable to the surfaces with orbifold points.
引用
收藏
页码:228 / 250
页数:23
相关论文
共 33 条
[1]  
[Anonymous], ARXIVDGGA9702018
[2]  
Bonahon F., 1996, Ann. Fac. Sci. Toulouse Math., V5, P233
[3]   Teichmuller Theory of Bordered Surfaces [J].
Chekhov, Leonid O. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[4]   Observables in 3D gravity and geodesic algebras [J].
Chekhov, LO ;
Fock, VV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (11) :1201-1208
[5]  
CHEKHOV LO, 2007, IRMA LECT MATH THEOR, V11, P579
[6]  
CHEKHOV LO, ARXIVMATH0403247
[7]   Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces [J].
Etayo, JJ ;
Martínez, E .
MATHEMATICA SCANDINAVICA, 2004, 95 (02) :226-244
[8]   DISCRETE HEISENBERG-WEYL GROUP AND MODULAR GROUP [J].
FADDEEV, LD .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) :249-254
[9]  
Fock V.V., 2007, Handbook of Teichmuller theory, VI, P647, DOI DOI 10.4171/029-1/16
[10]  
Fock V. V., 1999, Proc. Steklov Inst. Math, V226, P149