Integration within polygonal finite elements

被引:74
作者
Dasgupta, G [1 ]
机构
[1] Columbia Univ, Sch Engn & Appl Sci, Dept Civil Engn & Appl Mech, New York, NY 10027 USA
关键词
finite elements; boundary element method; polygons; computation;
D O I
10.1061/(ASCE)0893-1321(2003)16:1(9)
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Engineering mechanics formulations of aerospace industry problems overwhelmingly rely upon spatial averaging techniques. Crucial applications in the area of dynamic response analysis and stochastic estimation of material de gradation can be cited as important cases. Integration procedures on finite domains underlie physically acceptable averaging processes. Unlike one-dimensional cases, integrals within arbitrary areas and volumes cannot be approximated by a Gaussian form of numerical quadrature. Here the divergence theorem is applied once and twice, respectively, for polygonal and polyhedral integration domains, to construct integrals on boundary wireframes. The sum,of Gaussian quadrature values on linear segments of the wireframe yields the final result of numerical integration on a finite element.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 24 条
[1]  
ALEKSANDROV PS, 1960, COMBINATORIAL TOPOLO
[2]  
[Anonymous], 2000, Geometry, Spinors and Applications
[3]  
Bathe K.J., 2006, Finite Element Procedures
[4]  
Courant R., 1943, B AM MATH SOC, DOI [DOI 10.1090/S0002-9904-1943-07818-4, 10.1090/s0002-9904-1943-07818-4]
[5]  
DASGUPTA G, 1992, ACTA MECH, V3, P99
[6]  
DASGUPTA G, 2000, CEEMGD20002 COL U
[7]  
DASGUPTA G, 1989, ADV BOUNDARY ELEMENT, P253
[8]  
Gumbel E. J., 1958, Statistics of Extremes
[9]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis
[10]  
IRONS BM, 1972, EXPERIENCE PATCH TES