Six-dimensional real and reciprocal space small-angle X-ray scattering tomography

被引:150
作者
Schaff, Florian [1 ,2 ]
Bech, Martin [3 ]
Zaslansky, Paul [4 ]
Jud, Christoph [1 ,2 ]
Liebi, Marianne [5 ]
Guizar-Sicairos, Manuel [5 ]
Pfeiffer, Franz [1 ,2 ,6 ]
机构
[1] Tech Univ Munich, Lehrstuhl Biomed Phys, Dept Phys, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Med Tech, D-85748 Garching, Germany
[3] Lund Univ, Dept Med Radiat Phys, Clin Sci, S-22185 Lund, Sweden
[4] Charite, Julius Wolff Inst, D-13353 Berlin, Germany
[5] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[6] Tech Univ Munich, Klinikum Rechts Isar, Inst Diagnost & Interventionelle Radiol, D-81675 Munich, Germany
关键词
COMPUTED-TOMOGRAPHY; COLLAGEN ORIENTATION; BONE; MYELIN; SAXS; NANOSTRUCTURE; COMPOSITE; DENTIN; BRAIN;
D O I
10.1038/nature16060
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale(1), for example of bone, teeth and brain matter(2-5). Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work(6-11) using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres-for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
引用
收藏
页码:353 / +
页数:10
相关论文
共 26 条
[1]   Spatial mapping of collagen fibril organisation in primate cornea - an X-ray diffraction investigation [J].
Boote, C ;
Dennis, S ;
Meek, K .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 146 (03) :359-367
[2]   Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste [J].
Bossa, Nathan ;
Chaurand, Perrine ;
Vicente, Jerome ;
Borschneck, Daniel ;
Levard, Clement ;
Aguerre-Chariol, Olivier ;
Rose, Jerome .
CEMENT AND CONCRETE RESEARCH, 2015, 67 :138-147
[3]   Multimodal x-ray scatter imaging [J].
Bunk, O. ;
Bech, M. ;
Jensen, T. H. ;
Feidenhans'l, R. ;
Binderup, T. ;
Menzel, A. ;
Pfeiffer, F. .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]   Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering [J].
De Felici, M. ;
Felici, R. ;
Ferrero, C. ;
Tartari, A. ;
Gambaccini, M. ;
Finet, S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (20) :5675-5688
[5]   Ptychographic X-ray computed tomography at the nanoscale [J].
Dierolf, Martin ;
Menzel, Andreas ;
Thibault, Pierre ;
Schneider, Philipp ;
Kewish, Cameron M. ;
Wepf, Roger ;
Bunk, Oliver ;
Pfeiffer, Franz .
NATURE, 2010, 467 (7314) :436-U82
[6]   EIGER: Next generation single photon counting detector for X-ray applications [J].
Dinapoli, Roberto ;
Bergamaschi, Anna ;
Henrich, Beat ;
Horisberger, Roland ;
Johnson, Ian ;
Mozzanica, Aldo ;
Schmid, Elmar ;
Schmitt, Bernd ;
Schreiber, Akos ;
Shi, Xintian ;
Theidel, Gerd .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 650 (01) :79-83
[7]   PILATUS:: a two-dimensional X-ray detector for macromolecular crystallography [J].
Eikenberry, EF ;
Brönnimann, C ;
Hülsen, G ;
Toyokawa, H ;
Horisberger, R ;
Schmitt, B ;
Schulze-Briese, C ;
Tomizaki, T .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 501 (01) :260-266
[8]   Myelin structure is a key difference in the x-ray scattering signature between meningioma, schwannoma and glioblastoma multiforme [J].
Falzon, G. ;
Pearson, S. ;
Murison, R. ;
Hall, C. ;
Siu, K. ;
Round, A. ;
Schueltke, E. ;
Kaye, A. H. ;
Lewis, R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (21) :6543-6553
[9]  
Feldkamp J., 2009, THESIS TU DRESDEN
[10]   Recent developments in tomographic small-angle X-ray scattering [J].
Feldkamp, J. M. ;
Kuhlmann, M. ;
Roth, S. V. ;
Timmann, A. ;
Gehrke, R. ;
Shakhverdova, I. ;
Paufler, P. ;
Filatov, S. K. ;
Bubnova, R. S. ;
Schroer, C. G. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (08) :1723-1726