Epithelial-mesenchymal transition in development and cancer

被引:70
作者
Micalizzi, Douglas S. [3 ]
Ford, Heide L. [1 ,2 ]
机构
[1] Univ Colorado, Dept Obstet & Gynecol, Sch Med, Aurora, CO 80045 USA
[2] Univ Colorado, Dept Biochem & Mol Genet, Sch Med, Aurora, CO 80045 USA
[3] Univ Colorado, Program Mol Biol, Sch Med, Med Sci Training Program, Aurora, CO 80045 USA
关键词
cancer; development; epithelial-mesenchymal transition; metastasis; Six1; Snail/Slug; TGF-beta; Twist; Wnt; GROWTH-FACTOR-BETA; TRANSCRIPTION FACTOR SNAIL; E-CADHERIN EXPRESSION; ESTROGEN-RECEPTOR-ALPHA; CELL-CYCLE ARREST; TGF-BETA; BREAST-CANCER; GENE-EXPRESSION; TUMOR PROGRESSION; COLORECTAL-CANCER;
D O I
10.2217/FON.09.94
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The epithelial-mesenchymal transition (EMT) is a critical developmental process from the earliest events of embryogenesis to later morphogenesis and organ formation. EMT contributes to the complex architecture of the embryo by permitting the progression of embryogenesis from a simple single-cell layer epithelium to a complex three-dimensional organism composed of both epithelial and mesenchymal cells. However, in most tissues EMT is a developmentally restricted process and fully differentiated epithelia typically maintain their epithelial phenotype. Recently, elements of EMT, specifically the loss of epithelial markers and the gain of mesenchymal markers, have been observed in pathological states, including epithelial cancers, Analysis of the molecular mechanisms of this oncogenic epithelial plasticity have implicated the inappropriate expression and activation of developmental EMT programs, suggesting that cancer cells may reinstitute properties of developmental EMT including enhanced migration and invasion. Thus, in the context of cancer, an EMT-like process may permit dissemination of tumor cells from the primary tumor into the surrounding stroma, setting the stage for metastatic spread. Consistent with this hypothesis, activation of these developmental EMT programs in human cancer correlates with advanced disease and poor prognosis. This review will focus on the current knowledge regarding developmental EMT pathways that have been implicated in cancer progression.
引用
收藏
页码:1129 / 1143
页数:15
相关论文
共 117 条
[61]   The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling [J].
Micalizzi, Douglas S. ;
Christensen, Kimberly L. ;
Jedlicka, Paul ;
Coletta, Ricardo D. ;
Baron, Anna E. ;
Harrell, J. Chuck ;
Horwitz, Kathryn B. ;
Billheimer, Dean ;
Heichman, Karen A. ;
Welm, Alana L. ;
Schiemann, William P. ;
Ford, Heide L. .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (09) :2678-2690
[62]   TGF-BETA INDUCED TRANSDIFFERENTIATION OF MAMMARY EPITHELIAL-CELLS TO MESENCHYMAL CELLS - INVOLVEMENT OF TYPE-I RECEPTORS [J].
MIETTINEN, PJ ;
EBNER, R ;
LOPEZ, AR ;
DERYNCK, R .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :2021-2036
[63]   The transcriptional repressor snail promotes mammary tumor recurrence [J].
Moody, SE ;
Perez, D ;
Pan, TC ;
Sarkisian, CJ ;
Portocarrero, CP ;
Sterner, CJ ;
Notorfrancesco, KL ;
Cardiff, RD ;
Chodosh, LA .
CANCER CELL, 2005, 8 (03) :197-209
[64]   Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for snail, slug, and E47 factors in epithelial-mesenchymal transition [J].
Moreno-Bueno, Gerna ;
Cubillo, Eva ;
Sarrio, David ;
Peinado, Hector ;
Rodriguez-Pinilla, Socorro Maria ;
Villa, Sonia ;
Bolos, Victoria ;
Jorda, Mireia ;
Fabra, Angels ;
Portillo, Francisco ;
Palacios, Jose ;
Cano, Amparo .
CANCER RESEARCH, 2006, 66 (19) :9543-9556
[65]   β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation [J].
Morkel, M ;
Huelsken, J ;
Wakamiya, M ;
Ding, JX ;
van de Wetering, M ;
Clevers, H ;
Taketo, MM ;
Behringer, RR ;
Shen, MM ;
Birchmeier, W .
DEVELOPMENT, 2003, 130 (25) :6283-6294
[66]   Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression [J].
Moustakas, Aristidis ;
Heldin, Carl-Henrik .
CANCER SCIENCE, 2007, 98 (10) :1512-1520
[67]   TGF-β1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival [J].
Mu, L. ;
Katsaros, D. ;
Lu, L. ;
Preti, M. ;
Durando, A. ;
Arisio, R. ;
Yu, H. .
BRITISH JOURNAL OF CANCER, 2008, 99 (08) :1357-1363
[68]  
Müller HAJ, 2001, DEV GROWTH DIFFER, V43, P327, DOI 10.1046/j.1440-169x.2001.00587.x
[69]   Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases [J].
Muraoka, RS ;
Dumont, N ;
Ritter, CA ;
Dugger, TC ;
Brantley, DM ;
Chen, J ;
Easterly, E ;
Roebuck, LR ;
Ryan, S ;
Gotwals, PJ ;
Koteliansky, V ;
Arteaga, CL .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (12) :1551-1559
[70]   Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression [J].
Muraoka-Cook, R. S. ;
Shin, I. ;
Yi, J. Y. ;
Easterly, E. ;
Barcellos-Hoff, M. H. ;
Yingling, J. M. ;
Zent, R. ;
Arteaga, C. L. .
ONCOGENE, 2006, 25 (24) :3408-3423