Boundedness in a quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type

被引:3
|
作者
Lei, Long [1 ]
Li, Zhongping [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong, Peoples R China
基金
美国国家科学基金会;
关键词
Chemotaxis; Haptotaxis; Nonlinear diffusion; Boundedness; Logistic source; Nonlinear production; KELLER-SEGEL SYSTEM; LARGE TIME BEHAVIOR; BLOW-UP; GROWTH SYSTEM; INVASION; TISSUE;
D O I
10.1186/s13661-019-1255-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the boundedness of solutions to the following quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type: {u(t) = del . (D(u)del u) - chi del . (u del v) - xi del . (u del w) + mu u(1 - u(r-1) - w), x is an element of Omega, t > 0, v(t) = Delta v - v + u(eta), x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0, under zero-flux boundary conditions in a smooth bounded domain Omega subset of R-n(n >= 2), with parameters r >= 2, eta is an element of (0, 1] and the parameters chi > 0, xi > 0, mu > 0. The diffusivity D(u) is assumed to satisfy D(u) >= delta u(-alpha), D(0) > 0 for all u > 0 with some alpha is an element of R and delta > 0. It is proved that if alpha < n+2-2n eta/2+n, then, for sufficiently smooth initial data (u(0), v(0), w(0)), the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Dominance of chemotaxis in a chemotaxis-haptotaxis model
    Tao, Youshan
    Winkler, Michael
    NONLINEARITY, 2014, 27 (06) : 1225 - 1239
  • [22] Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production
    Tao, Xueyan
    Zhou, Shulin
    Ding, Mengyao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 733 - 747
  • [23] BOUNDEDNESS IN A PARABOLIC-PARABOLIC QUASILINEAR CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE
    Wang, Liangchen
    Li, Yuhuan
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 789 - 802
  • [24] Boundedness of solutions to a chemotaxis-haptotaxis model with nonlocal terms
    Ren, Guoqiang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [25] ON THE BOUNDEDNESS AND DECAY OF SOLUTIONS FOR A CHEMOTAXIS-HAPTOTAXIS SYSTEM WITH NONLINEAR DIFFUSION
    Zheng, Pan
    Mu, Chunlai
    Song, Xiaojun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) : 1737 - 1757
  • [26] Optimal mass on the parabolic-elliptic-ODE minimal chemotaxis-haptotaxis in R2
    Li, Siying
    Wang, Jinhuan
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [27] Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion
    Jia, Zhe
    Yang, Zuodong
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [28] Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion
    Hu, Xuegang
    Wang, Liangchen
    Mu, Chunlai
    Li, Ling
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (02) : 181 - 186
  • [29] Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model
    Jin, Hai-Yang
    Xiang, Tian
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (07) : 1373 - 1417
  • [30] The Global Existence and Boundedness of Solutions to a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production
    Ai, Beibei
    Jia, Zhe
    MATHEMATICS, 2024, 12 (16)