Boundedness in a quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type

被引:3
|
作者
Lei, Long [1 ]
Li, Zhongping [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong, Peoples R China
基金
美国国家科学基金会;
关键词
Chemotaxis; Haptotaxis; Nonlinear diffusion; Boundedness; Logistic source; Nonlinear production; KELLER-SEGEL SYSTEM; LARGE TIME BEHAVIOR; BLOW-UP; GROWTH SYSTEM; INVASION; TISSUE;
D O I
10.1186/s13661-019-1255-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the boundedness of solutions to the following quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type: {u(t) = del . (D(u)del u) - chi del . (u del v) - xi del . (u del w) + mu u(1 - u(r-1) - w), x is an element of Omega, t > 0, v(t) = Delta v - v + u(eta), x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0, under zero-flux boundary conditions in a smooth bounded domain Omega subset of R-n(n >= 2), with parameters r >= 2, eta is an element of (0, 1] and the parameters chi > 0, xi > 0, mu > 0. The diffusivity D(u) is assumed to satisfy D(u) >= delta u(-alpha), D(0) > 0 for all u > 0 with some alpha is an element of R and delta > 0. It is proved that if alpha < n+2-2n eta/2+n, then, for sufficiently smooth initial data (u(0), v(0), w(0)), the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Boundedness in a quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type
    Long Lei
    Zhongping Li
    Boundary Value Problems, 2019
  • [2] GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTION OF A PARABOLIC-PARABOLIC-ODE CHEMOTAXIS-HAPTOTAXIS MODEL WITH (GENERALIZED) LOGISTIC SOURCE
    Liu, Ling
    Zheng, Jiashan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3357 - 3377
  • [3] Finite-time blow-up in the higher dimensional parabolic-parabolic-ODE minimal chemotaxis-haptotaxis system
    Rani, Poonam
    Tyagi, Jagmohan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 : 133 - 160
  • [4] Boundedness of solutions for a quasilinear chemotaxis-haptotaxis model
    Ren, Guoqiang
    Liu, Bin
    HOKKAIDO MATHEMATICAL JOURNAL, 2021, 50 (02) : 207 - 245
  • [5] Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model
    Zheng, Jiashan
    Wang, Yifu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (09) : 1898 - 1909
  • [6] Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
    Liu, Ji
    Zheng, Jiashan
    Wang, Yifu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [7] Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
    Wang, Liangchen
    Mu, Chunlai
    Hu, Xuegang
    Tian, Ya
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) : 3000 - 3016
  • [8] Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source
    Zheng, Jiashan
    NONLINEARITY, 2017, 30 (05) : 1987 - 2009
  • [9] Boundedness in a three-dimensional chemotaxis-haptotaxis model
    Cao, Xinru
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [10] Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion
    Li, Yan
    Lankeit, Johannes
    NONLINEARITY, 2016, 29 (05) : 1564 - 1595