A Semi-dense Direct Visual Inertial Odometry for State Estimator

被引:0
|
作者
Han, Tianrui [1 ]
Zong, Qun [1 ]
Lu, Hanchen [1 ]
Tian, Bailing [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
关键词
Semi-dense Direct Method; Multi-state Constraint Kalman Filter; Loop Closure; VERSATILE;
D O I
10.23919/chicc.2019.8865413
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Visual-inertial based navigation method increases popularity in recent years. In this paper, we present a method using the semi-dense direct methods by minimizing photometric error and the inertial information for localization with a multi-state constraint Kalman filter (MSCKF). The introduction of semi-direct method can better adapt to complex environments and reduce the computational costs. With the fusion of the visual-inertial odometry and the inertial information by the filter, a high frequency and stable estimated state is available. Furthermore, we design a keyframe window for global optimization and loop closure detection to correct the cumulative error in large-scale experiments. The method obtains a balance between the accuracy of the state estimation and the computational complexity. The performance of the system with stereo cameras is demonstrated in large-scale experiments without GPS.
引用
收藏
页码:4371 / 4376
页数:6
相关论文
共 50 条
  • [1] Hybrid Semi-Dense 3D Semantic-Topological Mapping From Stereo Visual-Inertial Odometry SLAM With Loop Closure Detection
    Wen, Shuhuan
    Zhao, Yanfang
    Liu, Xin
    Sun, Fuchun
    Lu, Huibin
    Wang, Zhe
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 16057 - 16066
  • [2] Semi-Direct Monocular Visual-Inertial Odometry Using Point and Line Features for IoV
    Jiang, Nan
    Huang, Debin
    Chen, Jing
    Wen, Jie
    Zhang, Heng
    Chen, Honglong
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
  • [3] Direct Sparse Stereo Visual-Inertial Global Odometry
    Wang, Ziqiang
    Li, Mei
    Zhou, Dingkun
    Zheng, Ziqiang
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 14403 - 14409
  • [4] Rolling-Shutter Modelling for Direct Visual-Inertial Odometry
    Schubert, David
    Demmel, Nikolaus
    von Stumberg, Lukas
    Usenko, Vladyslav
    Cremers, Daniel
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2462 - 2469
  • [5] Joint optimization based on direct sparse stereo visual-inertial odometry
    Wen, Shuhuan
    Zhao, Yanfang
    Zhang, Hong
    Lam, Hak Keung
    Manfredi, Luigi
    AUTONOMOUS ROBOTS, 2020, 44 (05) : 791 - 809
  • [6] Online Spatial and Temporal Calibration for Monocular Direct Visual-Inertial Odometry
    Feng, Zheyu
    Li, Jianwen
    Zhang, Lundong
    Chen, Chen
    SENSORS, 2019, 19 (10):
  • [7] FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
    Zheng, Chunran
    Xu, Wei
    Zou, Zuhao
    Hua, Tong
    Yuan, Chongjian
    He, Dongjiao
    Zhou, Bingyang
    Liu, Zheng
    Lin, Jiarong
    Zhu, Fangcheng
    Ren, Yunfan
    Wang, Rong
    Meng, Fanle
    Zhang, Fu
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 326 - 346
  • [8] ESVO2: Direct Visual-Inertial Odometry With Stereo Event Cameras
    Niu, Junkai
    Zhong, Sheng
    Lu, Xiuyuan
    Shen, Shaojie
    Gallego, Guillermo
    Zhou, Yi
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 2164 - 2183
  • [9] PC-SD-VIO: A constant intensity semi-direct monocular visual-inertial odometry with online photometric calibration
    Liu, Quanpan
    Wang, Zhengjie
    Wang, Huan
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 146
  • [10] An improved Multi-State Constraint Kalman Filter for Visual-Inertial Odometry
    Abdollahi, M. R.
    Pourtakdoust, Seid H.
    Nooshabadi, M. H. Yoosefian
    Pishkenari, H. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (15):