Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China

被引:113
作者
Tang, Xinggang [1 ]
Yuan, Yingdan [1 ]
Li, Xiangming [2 ]
Zhang, Jinchi [1 ]
机构
[1] Nanjing Forestry Univ, Jiangsu Prov Key Lab Soil & Water Conservat & Eco, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing, Peoples R China
[2] Guangdong Univ Petrochem Technol, Coll Mat Sci & Technol, Maoming, Peoples R China
关键词
climate change; pine wilt disease; species distribution model; risk prediction; pine species; BURSAPHELENCHUS-XYLOPHILUS; POTENTIAL DISTRIBUTION; ECOLOGICAL NICHE; GEOGRAPHICAL-DISTRIBUTION; SPECIES DISTRIBUTION; WINTER PRECIPITATION; ORGANIC-CARBON; NORTH-AMERICA; MAXENT; TEMPERATURE;
D O I
10.3389/fpls.2021.652500
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pine wilt disease is a devastating forest disease caused by the pinewood nematode Bursaphelenchus xylophilus, which has been listed as the object of quarantine in China. Climate change influences species and may exacerbate the risk of forest diseases, such as the pine wilt disease. The maximum entropy (MaxEnt) model was used in this study to identify the current and potential distribution and habitat suitability of three pine species and B. xylophilus in China. Further, the potential distribution was modeled using the current (1970-2000) and the projected (2050 and 2070) climate data based on two representative concentration pathways (RCP 2.6 and RCP 8.5), and fairly robust prediction results were obtained. Our model identified that the area south of the Yangtze River in China was the most severely affected place by pine wilt disease, and the eastern foothills of the Tibetan Plateau acted as a geographical barrier to pest distribution. Bioclimatic variables related to temperature influenced pine trees' distribution, while those related to precipitation affected B. xylophilus's distribution. In the future, the suitable area of B. xylophilus will continue to increase; the shifts in the center of gravity of the suitable habitats of the three pine species and B. xylophilus will be different under climate change. The area ideal for pine trees will migrate slightly northward under RCP 8.5. The pine species will continue to face B. xylophilus threat in 2050 and 2070 under the two distinct climate change scenarios. Therefore, we should plan appropriate measures to prevent its expansion. Predicting the distribution of pine species and the impact of climate change on forest diseases is critical for controlling the pests according to local conditions. Thus, the MaxEnt model proposed in this study can be potentially used to forecast the species distribution and disease risks and provide guidance for the timely prevention and management of B. xylophilus.
引用
收藏
页数:14
相关论文
共 94 条
[1]  
[Anonymous], 2011, NEMATODES MORPHOLOGY
[2]   Spatial prediction of species distribution: an interface between ecological theory and statistical modelling [J].
Austin, MP .
ECOLOGICAL MODELLING, 2002, 157 (2-3) :101-118
[3]   A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly [J].
Battisti, A ;
Stastny, M ;
Buffo, E ;
Larsson, S .
GLOBAL CHANGE BIOLOGY, 2006, 12 (04) :662-671
[4]   Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions [J].
Beaumont, LJ ;
Hughes, L ;
Poulsen, M .
ECOLOGICAL MODELLING, 2005, 186 (02) :250-269
[5]  
Braasch H., 2001, Bulletin OEPP, V31, P127, DOI 10.1111/j.1365-2338.2001.tb00982.x
[6]   Evidence of climatic niche shift during biological invasion [J].
Broennimann, O. ;
Treier, U. A. ;
Mueller-Schaerer, H. ;
Thuiller, W. ;
Peterson, A. T. ;
Guisan, A. .
ECOLOGY LETTERS, 2007, 10 (08) :701-709
[7]  
Buckman-Sewald Jessica, 2014, International Journal of Biodiversity and Conservation, V6, P171
[8]  
Businsky Roman, 2008, Harvard Papers in Botany, V13, P1, DOI 10.3100/1043-4534(2008)13[1:AROTHP]2.0.CO
[9]  
2
[10]   Does low-temperature pest management cause damage? Literature review and observational study of ethnographic artifacts [J].
Carrlee, E .
JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION, 2003, 42 (02) :141-166