Representation theorems for probability functions satisfying spectrum exchangeability in inductive logic

被引:8
作者
Landes, J. [1 ]
Paris, J. B. [1 ]
Vencovska, A. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Uncertain reasoning; Inductive logic; Probability logic; Spectrum exchangeability; de Finetti's theorem; Equality;
D O I
10.1016/j.ijar.2009.07.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove de Finetti style representation theorems covering the class of all probability functions satisfying spectrum exchangeability in polyadic inductive logic and give an application by characterizing those probability functions satisfying spectrum exchangeability which can be extended to a language with equality whilst still satisfying that property. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 31 条
[1]  
[Anonymous], 1979, RELATIONS PROBABILIT
[2]  
[Anonymous], 1967, INEQUALITIES
[3]  
Carnap R., 1952, CONTINUUM INDUCTIVE
[4]  
Carnap R., 1980, STUDIES INDUCTIVE LO, VII, P7
[5]  
Carnap R., 1971, STUDIES INDUCTIVE LO, VI, P33
[6]  
Carnap Rudolf., 1950, Logical Foundations of Probability, V2nd ed
[7]   Representation insensitivity in immediate prediction under exchangeability [J].
de Cooman, Gert ;
Miranda, Enrique ;
Quaeghebeur, Erik .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 50 (02) :204-216
[8]  
De Finetti Bruno, 1937, Annales de l'institut Henri Poincare, V7, P1
[9]   CONCERNING MEASURES IN FIRST ORDER CALCULI [J].
GAIFMAN, H .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (01) :1-&
[10]  
Gaifman H., 1971, STUDIES INDUCTIVE LO, VI