Avalanches and perturbation theory in the random-field Ising model

被引:7
|
作者
Tarjus, Gilles [1 ]
Tissier, Matthieu [1 ,2 ]
机构
[1] Univ Paris 06, CNRS UMR 7600, LPTMC, Boite 121,4 Pl Jussieu, F-75252 Paris, France
[2] Univ Republica, Fac Ingn, Inst Fis, JH y Reissig 565, Montevideo 11000, Uruguay
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2016年
关键词
renormalisation group; disordered systems; avalanches; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; SUPERSYMMETRY;
D O I
10.1088/1742-5468/2016/02/023207
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Perturbation theory for the random-field Ising model (RFIM) has the infamous attribute that it predicts at all orders a dimensional-reduction property for the critical behavior that turns out to be wrong in low dimensions. Guided by our previous work based on the nonperturbative functional renormalization group (NP-FRG), we show that one can still make some use of the perturbation theory for a finite range of dimensions below the upper critical dimension, d = 6. The new twist is to account for the influence of large-scale zero-temperature events known as avalanches. These avalanches induce nonanalyticities in the field dependence of the correlation functions and renormalized vertices, and we compute in a loop expansion the eigenvalue associated with the corresponding anomalous operator. The outcome confirms the NP-FRG prediction that the dimensional-reduction fixed point correctly describes the dominant critical scaling of the RFIM above some dimension close to 5 but not below.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SCALING THEORY OF THE RANDOM-FIELD ISING-MODEL
    BRAY, AJ
    MOORE, MA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L927 - L933
  • [2] Fluctuations in the random-field Ising model
    Yokota, T
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (23) : 5179 - 5186
  • [3] WEIGHTED MEAN-FIELD THEORY FOR THE RANDOM-FIELD ISING-MODEL
    LANCASTER, D
    MARINARI, E
    PARISI, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (14): : 3959 - 3973
  • [4] Critical behavior of the random-field Ising model
    Gofman, M
    Adler, J
    Aharony, A
    Harris, AB
    Schwartz, M
    PHYSICAL REVIEW B, 1996, 53 (10): : 6362 - 6384
  • [5] MULTICRITICAL POINTS IN AN ISING RANDOM-FIELD MODEL
    KAUFMAN, M
    KLUNZINGER, PE
    KHURANA, A
    PHYSICAL REVIEW B, 1986, 34 (07): : 4766 - 4770
  • [6] Dynamical properties of random-field Ising model
    Sinha, Suman
    Mandal, Pradipta Kumar
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [7] Studying avalanches in the ground state of the two-dimensional random-field Ising model driven by an external field
    Frontera, C
    Vives, E
    PHYSICAL REVIEW E, 2000, 62 (05): : 7470 - 7473
  • [8] Fluctuations and criticality in the random-field Ising model
    Theodorakis, Panagiotis E.
    Georgiou, Ioannis
    Fytas, Nikolaos G.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [9] Random-field Ising model in and out of equilibrium
    Liu, Y.
    Dahmen, K. A.
    EPL, 2009, 86 (05)
  • [10] Critical aspects of the random-field Ising model
    Nikolaos G. Fytas
    Panagiotis E. Theodorakis
    Ioannis Georgiou
    Ioannis Lelidis
    The European Physical Journal B, 2013, 86