The linear codes of t-designs held in the Reed-Muller and Simplex codes

被引:9
作者
Ding, Cunsheng [1 ]
Tang, Chunming [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2021年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
Cyclc code; Linear code; Reed-Muller code; t-design;
D O I
10.1007/s12095-021-00470-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A fascinating topic of combinatorics is the study of t-designs, which has a very long history. The incidence matrix of a t-design generates a linear code over GF(q) for any prime power q, which is called the linear code of the t-design over GF(q). On the other hand, some linear codes hold t-designs with t >= 1. The purpose of this paper is to study the linear codes of t-designs held in the Reed-Muller and Simplex codes. Some general theory for the linear codes of t-designs held in linear codes is presented. Several open problems are also presented.
引用
收藏
页码:927 / 949
页数:23
相关论文
共 22 条
  • [1] Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
  • [2] Assmus EF, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1269
  • [3] Beth T., 1999, Design Theory, V2, DOI [10.1017/CBO9781139507660, DOI 10.1017/CBO9781139507660]
  • [4] THE DIMENSION OF PROJECTIVE GEOMETRY CODES
    CECCHERINI, PV
    HIRSCHFELD, JWP
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 117 - 126
  • [5] EXTENDED AFFINE-INVARIANT CYCLIC CODES AND ANTICHAINS OF A PARTIALLY ORDERED SET
    CHARPIN, P
    [J]. DISCRETE MATHEMATICS, 1990, 80 (03) : 229 - 247
  • [6] SUBFIELD SUBCODES OF MODIFIED REED-SOLOMON CODES
    DELSARTE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) : 575 - 576
  • [7] Ding C., 2018, Designs From Linear Codes, DOI [10.1142/11101, DOI 10.1142/11101]
  • [8] Ding C., 2015, Codes From Difference Sets
  • [9] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed-Muller codes
    Ding, Cunsheng
    Tang, Chunming
    Tonchev, Vladimir D.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 625 - 641
  • [10] Bent Vectorial Functions, Codes and Designs
    Ding, Cunsheng
    Munemasa, Akihiro
    Tonchev, Vladimir D.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7533 - 7541