Quantum gravitational corrections to a star metric and the black hole limit

被引:34
作者
Calmet, Xavier [1 ]
Casadio, Roberto [2 ,3 ]
Kuipers, Folkert [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[2] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Sez Bologna, IS FLAG, Via B Pichat 6-2, I-40127 Bologna, Italy
基金
英国科学技术设施理事会;
关键词
SCHWINGER-DEWITT TECHNIQUE; GENERAL-RELATIVITY; GRAVITY; CURVATURE; 2ND-ORDER; SCALE; FIELD;
D O I
10.1103/PhysRevD.100.086010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we consider the full set of quantum gravitational corrections to a star metric to second order in curvature. As we use an effective field theoretical approach, these corrections apply to any model of quantum gravity that is based on general coordinate invariance. We then discuss the black hole limit and identify an interesting phenomenon which could shed some light on the nature of astrophysical black holes: while star metrics receive corrections at second order in curvature, vacuum solutions such as black hole metrics do not. What happens to these corrections when a star collapses?
引用
收藏
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 2014, SPRINGER BRIEFS PHYS
[2]  
[Anonymous], ARXIV09111168
[3]   FINITE SELF-ENERGY OF CLASSICAL POINT PARTICLES [J].
ARNOWITT, R ;
DESER, S ;
MISNER, CW .
PHYSICAL REVIEW LETTERS, 1960, 4 (07) :375-377
[4]   THE GENERALIZED SCHWINGER-DEWITT TECHNIQUE IN GAUGE-THEORIES AND QUANTUM-GRAVITY [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 119 (01) :1-74
[5]   THE BASIS OF NONLOCAL CURVATURE INVARIANTS IN QUANTUM-GRAVITY THEORY - 3RD-ORDER [J].
BARVINSKY, AO ;
GUSEV, YV ;
VILKOVISKY, GA ;
ZHYTNIKOV, VV .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3525-3542
[6]   THE GENERALIZED SCHWINGER-DEWITT TECHNIQUE AND THE UNIQUE EFFECTIVE ACTION IN QUANTUM-GRAVITY [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1983, 131 (4-6) :313-318
[7]   COVARIANT PERTURBATION-THEORY .2. 2ND-ORDER IN THE CURVATURE - GENERAL ALGORITHMS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :471-511
[8]   BEYOND THE SCHWINGER-DEWITT TECHNIQUE - CONVERTING LOOPS INTO TREES AND IN-IN CURRENTS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1987, 282 (01) :163-188
[9]  
Birrell N.D., 1984, Quantum fields in curved space
[10]   Quantum gravitational corrections to the nonrelativistic scattering potential of two masses (vol D 67, art no 084033, 2003) [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JR ;
Holstein, BR .
PHYSICAL REVIEW D, 2005, 71 (06)