Congruences for Bernoulli numbers and Bernoulli polynomials

被引:14
作者
Sun, ZH [1 ]
机构
[1] HUAIYIN TEACHERS COLL,DEPT MATH,HUAIYIN 223001,JIANGSU,PEOPLES R CHINA
关键词
D O I
10.1016/S0012-365X(97)81050-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {B-n(x)} be the well-known Bernoulli polynomials. It is the purpose of this paper to determine pB(k(p - 1) + b)(x) mod p(n), where p is a prime, k, b nonnegative integers and x a rational p-integer.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1939, DUKE MATH J, DOI 10.1215/S0012-7094-39-00546-6
[2]   SOME CONGRUENCES FOR THE BERNOULLI NUMBERS [J].
CARLITZ, L .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (01) :163-172
[3]  
CARLITZ L, 1952, P AM MATH SOC, V3, P604
[4]  
CARLITZ L, 1960, PORT MATH, V19, P203
[5]  
COHEN DIA, 1978, BASIC TECHNIQUES COM, P119
[6]  
DILCHER K, 1713, BERNOULLI NUMBERS BI
[7]   BERNOULLI NUMBERS MODULO 27000 [J].
FRAME, JS .
AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (02) :87-&
[8]  
GILLESPIE FS, 1992, FIBONACCI QUART, V30, P349
[9]  
Ireland K., 1982, CLASSICAL INTRO MODE, P228
[10]  
STEVENS HR, 1986, FIBONACCI QUART, V24, P154