Axion astronomy with microwave cavity experiments

被引:55
作者
O'Hare, Ciaran A. J. [1 ]
Green, Anne M. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England
基金
英国科学技术设施理事会;
关键词
DARK; DENSITY; CONSTRAINTS; SIGNATURES; EFFICIENT; DESIGN; HALOS; MILKY;
D O I
10.1103/PhysRevD.95.063017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Terrestrial searches for the conversion of dark matter axions or axionlike particles into photons inside magnetic fields are sensitive to the phase space structure of the local Milky Way halo. We simulate signals in a hypothetical future experiment based on the Axion Dark Matter Experiment that could be performed once the axion has been detected and a frequency range containing the axion mass has been identified. We develop a statistical analysis to extract astrophysical parameters, such as the halo velocity dispersion and laboratory velocity, from such data and find that with only a few days integration time a level of precision can be reached, matching that of astronomical observations. For longer experiments lasting up to a year in duration, we find that exploiting the modulation of the power spectrum in time allows accurate measurements of the Solar peculiar velocity with an accuracy that would improve upon astronomical observations. We also simulate signals based on results from N-body simulations and find that finer substructure in the form of tidal streams would show up prominently in future data, even if only a subdominant contribution to the local dark matter distribution. In these cases, it would be possible to reconstruct all the properties of a dark matter stream using the time and frequency dependence of the signal. Finally, we consider the detection prospects for a network of streams from tidally disrupted axion miniclusters. These features appear much more prominently in the resolved spectrum than suggested by calculations based on a scan over a range of resonant frequencies, making the detection of axion minicluster streams more viable than previously thought. These results confirm that haloscope experiments in a postdiscovery era are able to perform "axion astronomy."
引用
收藏
页数:17
相关论文
共 103 条
  • [1] Design and operational experience of a microwave cavity axion detector for the 20-100 μeV range
    Al Kenany, S.
    Anil, M. A.
    Backes, K. M.
    Brubaker, B. M.
    Cahn, S. B.
    Carosi, G.
    Gurevich, Y. V.
    Kindel, W. F.
    Lamoreaux, S. K.
    Lehnert, K. W.
    Lewis, S. M.
    Malnou, M.
    Palken, D. A.
    Rapidis, N. M.
    Root, J. R.
    Simanovskaia, M.
    Shokair, T. M.
    Urdinaran, I.
    van Bibber, K. A.
    Zhong, L.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 854 : 11 - 24
  • [2] [Anonymous], 2006, JHEP, DOI DOI 10.1088/1126-6708/2006/06/051
  • [3] [Anonymous], 2009, Classical Electrodynamics
  • [4] First axion results from the XENON100 experiment
    Aprile, E.
    Agostini, F.
    Alfonsi, M.
    Arisaka, K.
    Arneodo, F.
    Auger, M.
    Balan, C.
    Barrow, P.
    Baudis, L.
    Bauermeister, B.
    Behrens, A.
    Beltrame, P.
    Bokeloh, K.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Cardoso, J. M. R.
    Colijn, A. P.
    Contreras, H.
    Cussonneau, J. P.
    Decowski, M. P.
    Duchovni, E.
    Fattori, S.
    Ferella, A. D.
    Fulgione, W.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grignon, C.
    Gross, E.
    Hampel, W.
    Itay, R.
    Kaether, F.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Le Calloch, M.
    Lellouch, D.
    Levy, C.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Lung, K.
    Lyashenko, A.
    MacMullin, S.
    Undagoitia, T. Marrodan
    [J]. PHYSICAL REVIEW D, 2014, 90 (06):
  • [5] WISPy cold dark matter
    Arias, Paola
    Cadamuro, Davide
    Goodsell, Mark
    Jaeckel, Joerg
    Redondo, Javier
    Ringwald, Andreas
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (06):
  • [6] Conceptual design of the International Axion Observatory (IAXO)
    Armengaud, E.
    Avignone, F. T.
    Betz, M.
    Brax, P.
    Brun, P.
    Cantatore, G.
    Carmona, J. M.
    Carosi, G. P.
    Caspers, F.
    Caspi, S.
    Cetin, S. A.
    Chelouche, D.
    Christensen, F. E.
    Dael, A.
    Dafni, T.
    Davenport, M.
    Derbin, A. V.
    Desch, K.
    Diago, A.
    Doebrich, B.
    Dratchnev, I.
    Dudarev, A.
    Eleftheriadis, C.
    Fanourakis, G.
    Ferrer-Ribas, E.
    Galan, J.
    Garcia, J. A.
    Garza, J. G.
    Geralis, T.
    Gimeno, B.
    Giomataris, I.
    Gninenko, S.
    Gomez, H.
    Gonzalez-Diaz, D.
    Guendelman, E.
    Hailey, C. J.
    Hiramatsu, T.
    Hoffmann, D. H. H.
    Horns, D.
    Iguaz, F. J.
    Irastorza, I. G.
    Isern, J.
    Imai, K.
    Jakobsen, A. C.
    Jaeckel, J.
    Jakovcic, K.
    Kaminski, J.
    Kawasaki, M.
    Karuza, M.
    Krcmar, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2014, 9
  • [7] Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance
    Arvanitaki, Asimina
    Geraci, Andrew A.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (16)
  • [8] String axiverse
    Arvanitaki, Asimina
    Dimopoulos, Savas
    Dubovsky, Sergei
    Kaloper, Nemanja
    March-Russell, John
    [J]. PHYSICAL REVIEW D, 2010, 81 (12):
  • [9] SQUID-Based Microwave Cavity Search for Dark-Matter Axions
    Asztalos, S. J.
    Carosi, G.
    Hagmann, C.
    Kinion, D.
    van Bibber, K.
    Hotz, M.
    Rosenberg, L. J.
    Rybka, G.
    Hoskins, J.
    Hwang, J.
    Sikivie, P.
    Tanner, D. B.
    Bradley, R.
    Clarke, J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [10] Any light particle search II - Technical Design Report
    Baehre, R.
    Doebrich, B.
    Dreyling-Eschweiler, J.
    Ghazaryan, S.
    Hodajerdi, R.
    Horns, D.
    Januschek, F.
    Knabbe, E-A
    Lindner, A.
    Notz, D.
    Ringwald, A.
    von Seggern, J. E.
    Stromhagen, R.
    Trines, D.
    Willke, B.
    [J]. JOURNAL OF INSTRUMENTATION, 2013, 8