Quaternionic eigenvalue problem

被引:44
作者
De Leo, S
Scolarici, G
Solombrino, L
机构
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
[2] Univ Lecce, Dept Phys, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
D O I
10.1063/1.1511789
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the (right) eigenvalue equation for H, C and R linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows us to translate the quaternionic problem into an equivalent real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics. (C) 2002 American Institute of Physics.
引用
收藏
页码:5815 / 5829
页数:15
相关论文
共 19 条
[11]  
Lee H. C., 1949, Rroc. Roy. Irish Acad., V52A, P253
[12]   THE DIRAC-EQUATION ON THE QUATERNION FIELD [J].
ROTELLI, P .
MODERN PHYSICS LETTERS A, 1989, 4 (10) :933-940
[13]   Zeros of quaternion polynomials [J].
Serôdio, R ;
Siu, LS .
APPLIED MATHEMATICS LETTERS, 2001, 14 (02) :237-239
[14]  
Wiegmann N.A., 1955, CAN J MATH, V7, P191
[15]   QUATERNIONIC EIGENVALUES [J].
WOOD, RMW .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (MAR) :137-138
[16]   Quaternions and matrices of quaternions [J].
Zhang, FZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 :21-57
[17]  
[No title captured]
[18]  
[No title captured]
[19]  
[No title captured]