In the first part of this Note we study the numerical approximation of Benney equations in the long wave-short wave resonance case. We prove the convergence of a finite-difference semi-discrete scheme in the energy space. In the second part of the Note we consider the semi-discretization of a quasilinear version of Benney equations. We prove the convergence of a finite-difference semi-discrete Lax-Friedrichs type scheme towards a weak entropy solution of the Cauchy problem. To cite this article: P Amorim, M. Figueira, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Li, Mingjie
Zheng, Yuxi
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Penn State Univ, Dept Math, University Pk, PA 16802 USACapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
机构:
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USATianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
Wang, Zhi-Qiang
Zhang, Chengxiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaTianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China