Clustering Algorithm Improvement in SAR Target Detection

被引:3
作者
An, Daoxiang [1 ,2 ]
Chen, Leping [1 ]
Zhou, Zhimin [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Hunan, Peoples R China
[2] Collaborat Innovat Ctr Informat Sensing & Underst, Xian 710077, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
SAR ATR; clustering algorithm; clustering center; concomitant weight coefficient; CFAR DETECTION; RESOLUTION;
D O I
10.1109/ACCESS.2019.2934756
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The synthetic aperture radar (SAR) auto target recognition (ATR) system developed at Lincoln Laboratory is a standard system for target detection/recognition. It has three main stages: a prescreener, a discriminator and a classifier. The clustering algorithm between the prescreener stage and the discriminator stage is used to cluster the multiple detections of a single target to form a region of interest (ROI). This paper introduces the steps of the common clustering algorithm and analyzes its disadvantages. We improve the common clustering algorithm from two aspects of the read sequence of image data and the calculation means of clustering quasi-center coordinates. The clustering results based on two actual images testify efficiency of clustering algorithm improvement.
引用
收藏
页码:113398 / 113403
页数:6
相关论文
共 9 条
  • [1] An Adaptively Truncated Clutter-Statistics-Based Two-Parameter CFAR Detector in SAR Imagery
    Ai, Jiaqiu
    Yang, Xuezhi
    Song, Jitao
    Dong, Zhangyu
    Jia, Lu
    Zhou, Fang
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (01) : 267 - 279
  • [2] A multiresolution approach to discrimination in SAR imagery
    Irving, WW
    Novak, LM
    Willsky, AS
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (04) : 1157 - 1169
  • [3] Multimodel CFAR Detection in Foliage Penetrating SAR Images
    Izzo, Alessio
    Liguori, Marco
    Clemente, Carmine
    Galdi, Carmela
    Di Bisceglie, Maurizio
    Soraghan, John J.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (04) : 1769 - 1780
  • [4] An Improved Superpixel-Level CFAR Detection Method for Ship Targets in High-Resolution SAR Images
    Li, Tao
    Liu, Zheng
    Xie, Rong
    Ran, Lei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (01) : 184 - 194
  • [5] Effects of polarization and resolution on SAR ATR
    Novak, LM
    Halversen, SD
    Owirka, GJ
    Hiett, M
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (01) : 102 - 116
  • [6] Automatic target recognition using enhanced resolution SAR data
    Novak, LM
    Owirka, GJ
    Weaver, AL
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1999, 35 (01) : 157 - 175
  • [7] Oliver C., 1998, UNDERSTANDING SYNTHE
  • [8] Target detection in SAR: Parallel algorithms, context extraction, and region adaptive techniques
    Phillips, W
    Chellappa, R
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY IV, 1997, 3070 : 76 - 87
  • [9] Superpixel-Based CFAR Target Detection for High-Resolution SAR Images
    Yu, Wenyi
    Wang, Yinghua
    Liu, Hongwei
    He, Jinglu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 730 - 734